20.01: Introducing Complex Numbers · handout 1.
21.01: Complex functions of complex numbers · handout 2.
22.01: Exponentials, trigonometric functions, hyperbolics and their inverses · handout 3.
27.01: Limits and continuity (for the Physicist) · handout 5.
28.01: Limits and continuity (for the Mathematician) · handout 6.
3.02: Derivatives and analyticity · handout 7.
4.02: Differentiability and Cauchy-Riemann · handout 8.
10.02: Harmonic functions and Laplace's equation · handout 9.
11.02: Complex Potentials · handout 10.
17.02: Conformal mapping · handout 11.
18.02: The Möbius Transformation · handout 12.
24.02: Integrals in the complex plane · handout 13.
25.02: Line and contour integrals · handout 14.
3.03: The Cauchy-Goursat theorem and its integral forms · handout 15.
4.03: Consequences of the Cauchy theorem · handout 16.
10.03: Series of Complex Numbers · handout 17.
11.03: Power Series · handout 18.
17.03: Uniform convergence · handout 19.
18.03: Analytic functions and continuation · (no handout).
24.03: Taylor Series · handout 20.
25.03: Laurent Series · handout 21.
31.03: Singularities · handout 22.
01.04: Residues · handout 23.
7.04: Applications of Residue Theory · handout 24.
8.04: Fourier Series · handout 25.
22.04: Summation of Series · handout 26.
23.04: The Riemann and the Bloch Spheres · handout 27.
28.04: Solutions of home exams I.
29.04: Solutions of home exams II.
30.04: All the questions answered.