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A series is a sum of, typically, infinitely many terms. It therefore involves two concepts: that of a “sequence” of
terms, that brings together the terms to be summed. And the limit of their sums. Let us start with defining the
sequence (zn). This is the notation for the collection of terms z0, z1, . . ., zk with k ∈ N. Such a sequence is called
“convergent” if it has a limit. In symbols:

(∃c ∈ C)(∀ε > 0)(∃N ∈ N)(n > N)⇒ (|zn − c| < ε) .

A sequence (zn) of complex numbers zn = xn + iyn converges to c = a + ib iff the sequence of real and imaginary
parts of zn converge to the real and imaginary part of c.

From there we are ready to introduce the notion of a series of complex numbers: given a sequence (zn), we define
another sequence (sm) such that sm =

∑m
n=0 zn. Each term is called a partial sum and the sequence (sm) itself is

what is referred to as a “series”. A convergent series is one who sequence of partial sums converge.
Theorem: If

∑
zm converges, then limm→∞ zm → 0. Proof: Assuming that limk→∞

∑
k zk converges, and calling

s its limit, then since zm =
∑m

k=1 zk −
∑m−1

k=1 for all m, taking the limit of both sides, and since we assumed the
existence of the limit of

∑
k zk, the limit of the difference is the difference of the limits and we find limm→∞ zm =

limm→∞

(∑m
k=1 zk −

∑m−1
k=1 zk

)
= s − s = 0. Therefore, if zm does not go to zero, it is immediate that the series

made out of the corresponding sequence does not converge. Of course while zm → 0 is a necessary condition for
convergence of the series, it is not sufficient. For instance, the harmonic series

∑∞
k=1

1
k diverges.

A series is called “absolutely convergent” if the series of absolute terms converge.
A series which is such that

∑
k zk converges but

∑
k |zk| diverges is called “conditionally convergent”. For instance,

the series
∑

k
(−1)k

k converges but the sum of absolute terms diverges, as just mentioned.
It is not always easy to prove that a series converges. One chief difficulty is that the limit might not be done in the

first place. In this case, one can use the powerful “Cauchy’s Convergence Principle” which asserts that a series
∑
zm

is convergent iff for every ε > 0, there exists N such that |zn+1 + zn+2 + · · ·+ zn+p| < ε for every n > N and p ∈ N.
Another useful property is that provided by the “comparison test”: If

∑
bn is a convergent series such that |zn| ≤ bn

for all n, then
∑
zn converges absolutely.

This can be proved thanks to Cauchy’s principle. Given that bk converges, then by this principle, for any ε > 0,
there exists N such that bn+1 + · · ·+ bn+p < ε for every n ≥ N and for all p ∈ N. From this and from the bounding
of |zk| by the bk, we have transported the Cauchy property to the |zk|, i.e., |zn+1| + · · · + |zn+p| < ε, proving the
convergence with the other implication of the Cauchy equivalence.

The geometric series is a good comparison series:

∞∑
m=0

qm =
1

1− q
(1)

if |q| < 1 and diverges otherwise.
“Ratio Test”: If a series (zn) has the property that for every n greater than N :

∣∣∣∣zn+1

zn

∣∣∣∣ ≤ q < 1 (2)

the series converges absolutely; if for every n > N ,

∣∣∣∣zn+1

zn

∣∣∣∣ ≥ 1 (3)
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then the series diverges. These will provide useful criteria for the power series that we will study later.
Proof: If 3 holds, then for all n ≥ N , |zn+1| ≥ |zn| and therefore |zn+1| > |zn|/2 and therefore does not tend to zero,

therefore impeding convergence of the series. On the other hand, if 2 holds, then |zN+2| ≤ |zN+1|q, |zN+3| ≤ |zN+1|q2,
that is, by recurrence:

|zN+p| ≤ |zN+1|qp−1 , (4)

from which we deduce:

|zN+1|+ |zN+2|+ · · · ≤ |zN+1|(1 + q + q2 + · · · ) , (5)

which proves the absolute convergence of (zn) from the comparison test (the sequence (zN+1q
n) is convergent, to

|zN+1|/(1− q)).
If the sequences of the ratios converge to a nonzero value (i.e., if zero is not an accumulation point, so that we

can apply the ratio test past a large enough integer), it is convenient to estimate whether a series converge from the
previous property:

Calling L the limit of the ratios:

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = L .

Then:

• If L < 1, the series converges absolutely.

• If L > 1, the series diverges.

• If L = 1, the series may converge or diverge.

This is an immediate consequence of the ratio test applied to kn = |zn+1/zn|, that can be made < q for a n large
enough.

A. Suggested readings

• http://en.wikipedia.org/wiki/Series_(mathematics).

• On the meaning of providing a convergence to 1 + 2 + 3 + 4 + · · · , at http://goo.gl/J7qHaV.

• “The Euler-Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable analytic continuation”,
Terence Tao, at http://goo.gl/tET01.

B. Exercises

1. Are the following series bounded? convergent? zn = (1 + i)2n/2n; zn = n2 + i/n2 and zn = sin( 1
4nπ) + in.

2. If zi → l, what is the limit of zi + z∗i ? convergent.

3. Which of these series are convergent:

∞∑
n=0

in

n2 − i
,

∞∑
n=1

n2
(
i

4

)n

,

∞∑
n=1

in

n
. (6)

C. Problems

1. Prove the counterpart of the ratio test: If a series (zn) is such that for every n > N , n
√
|zn| ≥ q < 1 for some N ,

the series converges absolutely. If for infinitely many n, n
√
|zn| ≥ 1, it diverges.

2. Prove Cauchy’s Convergence Principle for Series.
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