20.01: Introducing Complex Numbers · handout 1. 21.01: Complex functions of complex numbers · handout 2. 22.01: Exponentials, trigonometric functions, hyperbolics and their inverses · handout 3. 27.01: Limits and continuity (for the Physicist) · handout 5. 28.01: Limits and continuity (for the Mathematician) · handout 6. 3.02: Derivatives and analyticity · handout 7. 4.02: Differentiability and Cauchy-Riemann · handout 8. 10.02: Harmonic functions and Laplace's equation · handout 9. 11.02: Complex Potentials · handout 10. 17.02: Conformal mapping · handout 11. 18.02: The Möbius Transformation · handout 12. 24.02: Integrals in the complex plane · handout 13. 25.02: Line and contour integrals · handout 14. 3.03: The Cauchy-Goursat theorem and its integral forms · handout 15. 4.03: Consequences of the Cauchy theorem · handout 16. 10.03: Series of Complex Numbers · handout 17. 11.03: Power Series · handout 18. 17.03: Uniform convergence · handout 19. 18.03: Analytic functions and continuation · (no handout). 24.03: Taylor Series · handout 20. 25.03: Laurent Series · handout 21. 31.03: Singularities · handout 22. 01.04: Residues · handout 23. 7.04: Applications of Residue Theory · handout 24. 8.04: Fourier Series · handout 25. 22.04: Summation of Series · handout 26. 23.04: The Riemann and the Bloch Spheres · handout 27. 28.04: Solutions of home exams I. 29.04: Solutions of home exams II. 30.04: All the questions answered.