<span class="mw-page-title-main">Polariton condensation</span>
Elena & Fabrice's Web

Polariton condensation

Polariton condensation describes the problem of, precisely, BEC of polaritons. It is related, but not entirely, to photon condensation (which is not lasing) and even more so, although not entirely either, to polariton lasers.

The first big claim was made by H. Deng et al.[1] in 2002 but its broad recognition was sealed with the paper by J. Kasprzack et al.[2] Shortly after, it was also claimed in a trap.[3] Those were at liquid-He temperature, but claims were then made at room temperature, either for polariton lasing[4][5] or Bose-Einstein condensation.[6]

The question remained for a long time whether BEC is an adequate term for polaritons due to their strongly out-of-equilibrium character. J. Kasprzack et al. later defined two regimes of condensation: kinetic and thermodynamic.[7] An important milestone came with the report of equilibrium polariton BEC, with long-lifetime polaritons trapped in a circular potential and fitting convincingly the Bose-Einstein distribution up to where it shows quantum degeneracy of the ground state.[8]

Beyond macroscopic occupation of the ground state, milestones include the observation of the Bogoliubov spectrum of excitations.[9], spatial coherence[10], two-photon coherence[1][11], polarization pinning[12].

Important theoretical works include Porras & Tejedor's treatment of the linewidth with interactions[13], polariton statistics[14][15]

Early reports also includes Refs. [16].

Recent reports include Refs. [17][18][19][20].

Reviews include Refs. [21]

References

  1. 1.0 1.1 Condensation of Semiconductor Microcavity Exciton Polaritons. H. Deng, G. Weihs, C. Santori, J. Bloch and Y. Yamamoto in Science 298:199 (2002).
  2. Bose-Einstein condensation of exciton polaritons. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud and Le Si Dang in Nature 443:409 (2006).
  3. Bose-Einstein Condensation of Microcavity Polaritons in a Trap. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer and K. West in Science 316:1007 (2007).
  4. Room-Temperature Polariton Lasing in Semiconductor Microcavities. S. Christopoulos, G. Baldassarri Höger von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin and N. Grandjean in Phys. Rev. Lett. 98:126405 (2007).
  5. Room-temperature polariton lasing in an organic single-crystal microcavity. S. Kéna-Cohen and S. R. Forrest in Nature Photon. 4:371 (2010).
  6. Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf and R. F. Mahrt in Nature Mater. 13:247 (2014).
  7. Formation of an Exciton Polariton Condensate: Thermodynamic versus Kinetic Regimes. J. Kasprzak, D. D. Solnyshkov, R. André, Le Si Dang and G. Malpuech in Phys. Rev. Lett. 101:146404 (2008).
  8. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium. Y. Sun, P. Wen, Y. Yoon, G. Liu, M. Steger, L. N. Pfeiffer, K. West, D. W. Snoke and K. A. Nelson in Phys. Rev. Lett. 118:016602 (2017).
  9. Observation of Bogoliubov excitations in exciton-polariton condensates. S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel and Y. Yamamoto in Nature Phys. 4:700 (2008).
  10. Spatial Coherence of a Polariton Condensate. H. Deng, G. S. Solomon, R. Hey, K. H. Ploog and Y. Yamamoto in Phys. Rev. Lett. 99:126403 (2007).
  11. Second-Order Time Correlations within a Polariton Bose-Einstein Condensate in a CdTe Microcavity. J. Kasprzak, M. Richard, A. Baas, B. Deveaud, R. André, J.-Ph. Poizat and Le Si Dang in Phys. Rev. Lett. 100:067402 (2008).
  12. Build up and pinning of linear polarization in the Bose condensates of exciton polaritons. J. Kasprzak, R. André, Le Si Dang, I. A. Shelykh, A. V. Kavokin, Yuri G. Rubo, K. V. Kavokin and G. Malpuech in Phys. Rev. B 75:045326 (2007).
  13. Linewidth of a polariton laser: Theoretical analysis of self-interaction effects. D. Porras and C. Tejedor in Phys. Rev. B 67:161310(R) (2003).
  14. Spontaneous Coherence Buildup in a Polariton Laser. F. P. Laussy, G. Malpuech, A. Kavokin and P. Bigenwald in Phys. Rev. Lett. 93:016402 (2004).
  15. Statistics of the polariton condensate. P. Schwendimann and A. Quattropani in Phys. Rev. B 77:085317 (2008).
  16. Quantum Degenerate Exciton-Polaritons in Thermal Equilibrium. H. Deng, D. Press, S. Götzinger, G. Solomon, R. Hey, K. Ploog and Y. Yamamoto in Phys. Rev. Lett. 97:146402 (2006).
  17. Coherence measurements of polaritons in thermal equilibrium reveal a power law for two-dimensional condensates. H. Alnatah, Q. Yao, J. Beaumariage, S. Mukherjee, M. C. Tam, Z. Wasilewski, K. West, K. Baldwin, L. N. Pfeiffer and D. W. Snoke in Science Advances 10: (2024).
  18. Bose-Einstein Condensation of Polaritons at Room Temperature in a GaAs/AlGaAs Structure. H. Alnatah, S. Liang, Q. Yao, Q. Wan, J. Beaumariage, K. West, K. Baldwin, L. N. Pfeiffer and D. W. Snoke in ACS Photonics 12:48 (2024).
  19. Narrow-linewidth exciton-polariton laser. B. R. Fabricante, M. Król, M. Wurdack, M. Pieczarka, M. Steger, D. W. Snoke, K. West, L. N. Pfeiffer, A. G. Truscott, E. A. Ostrovskaya and E. Estrecho in Optica 11:838 (2024).
  20. Room-temperature continuous-wave pumped exciton polariton condensation in a perovskite microcavity. J. Song, S. Ghosh, X. Deng, C. Li, Q. Shang, X. Liu, Y. Wang, X. Gao, W. Yang, X. Wang, Q. Zhao, K. Shi, P. Gao, G. Xing, Q. Xiong and Q. Zhang in Science Advances 11: (2025).
  21. Exciton-polariton condensation. J. Keeling and N. G. Berloff in Contemp. Phys. 52:131 (2011).