Sandbox: Difference between revisions
Elena & Fabrice's Web
Fabrice (talk | contribs)
Fabrice (talk | contribs)
Line 12: Line 12:


{{done|this is a test}}
{{done|this is a test}}
{{done|which doesn't work}}
{{done|too bad|elena}}


== ¿Hey? [[Image:Thorne-spider.jpeg|50px|link=|]][[Image:Thorne-spider.jpeg|40px|link=|]][[Image:Thorne-spider.jpeg|30px|link=|]][[Image:Thorne-spider.jpeg|20px|link=|]][[Image:Thorne-spider.jpeg|10px|link=|]] ==
== ¿Hey? [[Image:Thorne-spider.jpeg|50px|link=|]][[Image:Thorne-spider.jpeg|40px|link=|]][[Image:Thorne-spider.jpeg|30px|link=|]][[Image:Thorne-spider.jpeg|20px|link=|]][[Image:Thorne-spider.jpeg|10px|link=|]] ==

Revision as of 11:00, 1 May 2014

¿Hey, whatcha doin on this page?

It's just where I put stuff that I'm experimenting on for possible f¯uture use.

¿Hey?

\begin{align}

   \left.\left(\frac{1}{1+x^2}\right)'\right|_{x=0}&=\left.-\frac{2x}{(1+x^2)^2}\right|_{x=0}=0\\
   \left.\left(-\frac{2x}{(1+x^2)^2}\right)'\right|_{x=0}&=\left.\frac{8x^2}{(1+x^2)^3}-\frac{2}{(1+x^2)^2}\right|_{x=0}=-2

\end{align}

this is a test which doesn't work too bad

¿Hey?

Script error: No such module "citation/CS1".

{{#MultiMaps: line=40.420027,-3.701653:40.42215,-3.700924:40.42233,-3.700865:40.423069,-3.700714:40.424351,-3.700693:40.425589,-3.700993:40.429015,-3.70242:40.427782,-3.695886:40.425193,-3.690844:40.42467,-3.690511:40.419345,-3.693072:40.418744,-3.696621:40.419733,-3.699663:40.419974,-3.700795:40.420027,-3.701653~color=blue~weight=10~opacity=.5~text = Justicia. |line=40.420027,-3.701653:40.42215,-3.700924:40.42233,-3.700865:40.423069,-3.700714:40.424351,-3.700693:40.425589,-3.700993:40.429015,-3.70242:40.429636,-3.705869:40.430612,-3.716234:40.423429,-3.710958:40.420259,-3.705978:40.420027,-3.701653~color=784421~weight=10~opacity=.5~text = Universidad. |line=40.420259,-3.705978:40.423429,-3.710958:40.420455,-3.715569:40.420259,-3.720387:40.418855,-3.72115:40.418887,-3.722566:40.41696,-3.723103:40.415277,-3.72409:40.414052,-3.724218:40.413953,-3.716901:40.41116,-3.71836:40.408709,-3.716815:40.406748,-3.711687:40.408072,-3.711052:40.411217,-3.708456:40.412271,-3.707823:40.412614,-3.707523:40.413431,-3.70748:40.413721,-3.708221:40.414548,-3.708044:40.415224,-3.708358:40.415381,-3.708605:40.415614,-3.708779:40.416036,-3.708617:40.417098,-3.708714:40.417809,-3.708574:40.417874,-3.708789:40.419786,-3.707952:40.420268,-3.7081:40.420259,-3.705978~color=d4aa00~weight=10~opacity=.5~text=Palacio. |line=40.413357,-3.707415:40.412614,-3.707555:40.411217,-3.708456:40.408088,-3.71102:40.406756,-3.711664:40.405041,-3.702695:40.407696,-3.693276:40.408742,-3.692084:40.409289,-3.692395:40.411021,-3.696472:40.412785,-3.699916:40.414337,-3.703971:40.413966,-3.704652:40.414007,-3.705988:40.413594,-3.707501:40.413357,-3.707415~color=ff6600~weight=10~opacity=.5~text=Embajadores. |line=40.414194,-3.703579:40.414603,-3.703048:40.416596,-3.700409:40.417707,-3.699695:40.417985,-3.699336:40.419316,-3.699765:40.419769,-3.699684

40.418806,-3.696538:40.419426,-3.693468:40.415726,-3.694605:40.415432,-3.694627:40.409264,-3.69232:40.411903,-3.698274:40.413496,-3.701525:40.414192,-3.703554

~color=8b0000~weight=10~opacity=.5~text=Cortes. |line=40.420268,-3.7081:40.419786,-3.707952:40.417874,-3.708789:40.417809,-3.708574:40.417098,-3.708714:40.416036,-3.708617:40.415614,-3.708779:40.415381,-3.708605:40.415224,-3.708358:40.414548,-3.708044:40.413721,-3.708221:40.413512,-3.707575:40.413958,-3.706385:40.413998,-3.705564:40.413945,-3.704668:40.414309,-3.704003:40.414194,-3.703579:40.414603,-3.703048:40.416596,-3.700409:40.417707,-3.699695:40.417985,-3.699336:40.419316,-3.699765:40.419769,-3.699684:40.420031,-3.701567:40.420325,-3.706042:40.420194,-3.706192:40.420268,-3.7081~color=red~Weight=10~opacity=1~text=Sol. |service=google}}

$$ \begin{align*} \label{eq:MonAug20130247CEST2012}

 a\ket{n}&=\sqrt{n}\ket{n-1}\,,&\bra{n}\,&a=\bra{n+1}\sqrt{n+1}\,,\\
 \ud{a}\ket{n}&=\sqrt{n+1}\ket{n+1}\,,&\bra{n}\,&\ud{a}=\bra{n-1}\sqrt{n}\,,

\end{align*} $$

$$

\begin{align*}
   \kern-1cm{(\mathrm{for}~i\le n+j)}\kern1cm a^i{\ud{a}}^j\ket{n}&={(n+j)!\over\sqrt{n!}\sqrt{(n+j-i)!}}\ket{n+j-i}\,,\\
   \kern-1cm{(\mathrm{for}~i\le n)}\kern1cm a^{\dagger j}a^i\ket{n}&={\sqrt{n!}\sqrt{(n+j-i)!}\over(n-i)!}\ket{n+j-i}\,.
 \end{align*}

$$

fuck this shit

playing with faces

arial font algerian font bookman font braggadocio font courier font desdemona font garamond font modern font symbol font (These are pretty silly.) wingdings font (As are these.)

Blog

Blog:Sandbox File:laussy-jornada-divulgacion.ppt

$$f(z) = \left( \prod_{j=1}^n \frac{z - z_j}{1 - \overline{z_j}z} \right) \left( \prod_{j=1}^m \frac{z - w_j}{1 - \overline{w_j}z} \right)^{-1} g(z)$$

Ramblings

Blog:Fabrice

$$

 \newcommand{\Re}{\mathrm{Re}\,}
 \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}

$$

We consider, for various values of $s$, the $n$-dimensional integral \begin{align}

 \label{def:Wns}
 W_n (s)
 &:= 
 \int_{[0, 1]^n} 
   \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}

\end{align} % which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.

By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align}

 \label{eq:W3k}
 W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.

\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.

\[  \begin{aligned}
\label{def:1}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
\]

\begin{aligned} \label{eq:1} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}


That's \eqref{eq:1} or \eqref{eq:W3k} above!

<google1 style="2"></google1>


Do you know this formula of mine <m>\frac{2\pi^2}{q}\int_0^\infty f(r)J_1(qr)rdr</m>?

21, May (2010) 17, August (2010)

<plot> set pm3d at s solid set palette rgb -6,-15,-7 unset colorbox set ticslevel 0 unset ztics unset surface set samples 70 set isosamples 70,70 complex(x,y)=x*{1,0}+y*{0,1} mandel(x,y,z,n) = (abs(z)>2.0 || n>=1000)? log(n): mandel(x,y,z*z+complex(x,y),n+1) a=-0.38 b=-0.612 set multiplot set origin 0,0 set size 0.55,0.77 splot [-0.5:0.5][-0.5:0.5] mandel(a,b,complex(x,y),0) set origin 0.35,-0.15 set size 0.7,0.96 set view 0,0,,, splot [-0.5:0.5][-0.5:0.5] mandel(a,b,complex(x,y),0) </plot>

<music>

       \relative c' { 
               e16-.->a(b gis)a-.->c(d b)c-.->e(f dis)e-.->a(b a)
               gis(b e)e,(gis b)b,(e gis)gis,(b e)e,(gis? b e)
       }

</music>

<music> \new Pianostaff << \new Staff { \time 2/2 \clef violin \key cis \minor \relative c \context Staff << \new Voice { \voiceOne

 r4 cis8 dis e4 fis
 gis8 fis gis a gis fis e gis
 fis e fis gis fis e dis fis
 e dis e fis e d cis e
 d cis d e d cis b d
 cis b cis d cis b a cis
 b a b cis b a gis b
 a2 r cis2.

} \new Voice { \voiceTwo

 e,8 gis a b cis dis bis cis
 dis4 r r2
 r1
 r1
 r4 fis, b b
 b a8 gis a2
 gis1~
 gis8 gis fis eis fis2
 gis2.

} \new Voice { \voiceThree \stemDown

 s1 s s s
 s2. fis4
 eis2 fis

} >> } \new Staff { \clef bass \time 2/2 \key cis \minor \relative c' \context Staff << \new Voice { \voiceOne

 s1
 r4 gis cis cis
 cis bis8 ais bis2
 cis1
 b2. s4
 s1
 b2 cis~
 cis~ cis8 cis b a
 gis2.

} \new Voice { \voiceTwo

 \stemUp
 cis,1
 bis2 e
 dis1
 \stemDown
 cis4 e a a
 a gis8 fis gis2~
 \stemUp
 gis fis
 gis1
 a2 fis~
 fis8 fis e dis e4

} \new Voice { \voiceThree

 \stemDown
 cis4 b a2
 gis4 r4 g2\rest
 e1\rest
 e1\rest
 e1\rest
 r4 cis' fis fis
 fis eis8 dis eis2
 fis r
 r

} >> } >> </music>

Trips

Cool videos

http://www.youtube.com/watch?v=MZAKjKC7Gho http://www.youtube.com/watch?v=2_HXUhShhmY

Unesco

Spanish cities

# Municipality Autonomous
community
Pop. (2009)
1 Madrid 3,255,944
2 Barcelona 1,621,537
3 Valencia 852,208
4 Seville 703,206
5 Zaragoza 674,317
6 Málaga 568,305
7 Murcia 436,870
8 Palma 401,270
9 Las Palmas 381,847
10 Bilbao 354,860
11 Alicante 334,757
12 Córdoba 328,428
13 Valladolid 317,864
14 Vigo 297,332
15 Gijón 277,554
16 L'Hospitalet de Llobregat 257,038
17 A Coruña 246,056
18 Vitoria-Gasteiz 235,661
19 Granada 234,325
20 Elche 230,112
21 Oviedo 224,005
22 Santa Cruz de Tenerife 222,417
23 Badalona 219,547
24 Cartagena 211,996
25 Terrassa 210,941
26 Jerez de la Frontera 207,532
27 Sabadell 206,493
28 Móstoles 206,478
29 Alcalá de Henares 204,574
30 Pamplona 198,491
31 Fuenlabrada 197,836
32 Almería 188,810
33 Leganés 186,066
34 Donostia-San Sebastián 186,066
35 Santander 182,700
36 Castellón de la Plana 180,005
37 Burgos 178,966
38 Albacete 169,716
39 Alcorcón 167,967
40 Getafe 167,164
41 Salamanca 155,619
42 Logroño 152,107
43 San Cristóbal de La Laguna 150,661
44 Huelva 148,806
45 Badajoz 148,334
46 Tarragona 140,323
47 Lleida 138.416
48 Marbella 134,623
49 León 134,305
50 Cádiz 126,766

Shorter

Template:MunicipalitiesinMurcia

GPS

File:AbedularCanencia-27Oct2013.gpx

File:AbedularCanencia-27Oct2013.gpx

Download the gpx file for this track.

Download the gpx file for this track.

Download the gpx file for this track.

Colors in MathJaX

$$ax^2+bx+c$$

$$\color{red}{ax^2}+bx+c$$