m (¿Hey?)
m (¿Hey?)
Line 13: Line 13:
 
43.318389, 11.331590, Sienna, {{thisday|19|May|2012}}.
 
43.318389, 11.331590, Sienna, {{thisday|19|May|2012}}.
 
43.773047, 11.255310, Firenze, {{thisday|20|May|2012}}.
 
43.773047, 11.255310, Firenze, {{thisday|20|May|2012}}.
 +
40.914397, 14.792449, Avellino, {{thisday|21|May|2012}}.
 +
41.128565, 16.868573, Bari, {{thisday|21|May|2012}}.
 +
42.881275, 13.920131, Martinsecuro, {{thisday|26|May|2012}}.
 
</googlemap>
 
</googlemap>
 
</center>
 
</center>

Revision as of 15:09, 28 May 2012

¿Hey, whatcha doin on this page?

It's just where I put stuff that I'm experimenting on for possible f¯uture use.

Contents

¿Hey?

05:13

<googlemap lat="32.546813" lon="11.953125" type="terrain" zoom="2" controls="small" width="730"> 43.389258, 11.543610, Casa Cornacchi, 18 May (2012). 43.392466, 11.573420, Miravalle, 18 May (2012). 43.318389, 11.331590, Sienna, 19 May (2012). 43.773047, 11.255310, Firenze, 20 May (2012). 40.914397, 14.792449, Avellino, 21 May (2012). 41.128565, 16.868573, Bari, 21 May (2012). 42.881275, 13.920131, Martinsecuro, 26 May (2012). </googlemap>

playing with faces

arial font algerian font bookman font braggadocio font courier font desdemona font garamond font modern font symbol font (These are pretty silly.) wingdings font (As are these.)

Blog

Blog:Sandbox

Ramblings

Blog:Fabrice

$ \newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)} $

We consider, for various values of $s$, the $n$-dimensional integral \begin{align} \tag{1} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align} % which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral (1) expresses the $s$-th moment of the distance to the origin after $n$ steps.

By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align} \tag{2} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. \end{align} Appropriately defined, (2) also holds for negative odd integers. The reason for (2) was long a mystery, but it will be explained at the end of the paper.

\[  \begin{aligned}
\label{def:1}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
\]

\begin{aligned} \tag{3} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}


That's (3) or (2) above!

<google1 style="2"></google1>


Do you know this formula of mine <m>\frac{2\pi^2}{q}\int_0^\infty f(r)J_1(qr)rdr</m>?

21, May (2010) 17, August (2010)

<plot> set pm3d at s solid set palette rgb -6,-15,-7 unset colorbox set ticslevel 0 unset ztics unset surface set samples 70 set isosamples 70,70 complex(x,y)=x*{1,0}+y*{0,1} mandel(x,y,z,n) = (abs(z)>2.0 || n>=1000)? log(n): mandel(x,y,z*z+complex(x,y),n+1) a=-0.38 b=-0.612 set multiplot set origin 0,0 set size 0.55,0.77 splot [-0.5:0.5][-0.5:0.5] mandel(a,b,complex(x,y),0) set origin 0.35,-0.15 set size 0.7,0.96 set view 0,0,,, splot [-0.5:0.5][-0.5:0.5] mandel(a,b,complex(x,y),0) </plot>

<music>

       \relative c' { 
               e16-.->a(b gis)a-.->c(d b)c-.->e(f dis)e-.->a(b a)
               gis(b e)e,(gis b)b,(e gis)gis,(b e)e,(gis? b e)
       }

</music>

<music> \new Pianostaff << \new Staff { \time 2/2 \clef violin \key cis \minor \relative c \context Staff << \new Voice { \voiceOne

 r4 cis8 dis e4 fis
 gis8 fis gis a gis fis e gis
 fis e fis gis fis e dis fis
 e dis e fis e d cis e
 d cis d e d cis b d
 cis b cis d cis b a cis
 b a b cis b a gis b
 a2 r cis2.

} \new Voice { \voiceTwo

 e,8 gis a b cis dis bis cis
 dis4 r r2
 r1
 r1
 r4 fis, b b
 b a8 gis a2
 gis1~
 gis8 gis fis eis fis2
 gis2.

} \new Voice { \voiceThree \stemDown

 s1 s s s
 s2. fis4
 eis2 fis

} >> } \new Staff { \clef bass \time 2/2 \key cis \minor \relative c' \context Staff << \new Voice { \voiceOne

 s1
 r4 gis cis cis
 cis bis8 ais bis2
 cis1
 b2. s4
 s1
 b2 cis~
 cis~ cis8 cis b a
 gis2.

} \new Voice { \voiceTwo

 \stemUp
 cis,1
 bis2 e
 dis1
 \stemDown
 cis4 e a a
 a gis8 fis gis2~
 \stemUp
 gis fis
 gis1
 a2 fis~
 fis8 fis e dis e4

} \new Voice { \voiceThree

 \stemDown
 cis4 b a2
 gis4 r4 g2\rest
 e1\rest
 e1\rest
 e1\rest
 r4 cis' fis fis
 fis eis8 dis eis2
 fis r
 r

} >> } >> </music>

Trips