m (Question 1)
m (¿Hey? 50px|link=http://www.27bslash6.com/overdue.html)
Line 17: Line 17:
 
\begin{equation}
 
\begin{equation}
 
e^{ik\pi/3}\quad\mathrm{for\ }k\in\{1,2,4,5\}
 
e^{ik\pi/3}\quad\mathrm{for\ }k\in\{1,2,4,5\}
\end{equation}
+
\end{equat$ion}
 +
 
 +
We can now calculate the integral by computing the residues and summing those on the upper half-plane (times $2i\pi$):
 +
 
 +
\begin{multline}
 +
  \mathrm{Res}_{k=1}\frac{1}{(z-e^{i\pi/3})(z-e^{i2\pi/3})(z-e^{-i\pi/3})(z-e^{-i2\pi/3})}
 +
  =\\
 +
  \frac{1}{(e^{i\pi/3}-e^{i2\pi/3})(e^{i\pi/3}-e^{-i\pi/3})(e^{i\pi/3}-e^{-i2\pi/3})}\,.
 +
\end{multline}
 +
 
 +
The denominator is calculated easily by dealing with the geometry of
 +
the unit circle (one is a sine, the other is after computing a
 +
product, the translated sum of a number with its opposite). One thus
 +
finds the residue:
 +
 
 +
$$1/(2i\sqrt{3}e^{i\pi/3})$$
 +
 
 +
The other residue is found similarly as
 +
 
 +
$$1/(2i\sqrt{3}e^{-i\pi/3})$$
 +
 
 +
so that the integral is finally, since $1/e^{-i\pi/3}+1/e^{i\pi/3}=e^{-i\pi/3}+e^{i\pi/3}=1$, simply:
 +
 
 +
$$\frac{\pi}{\sqrt3}$$
  
 
==== Question 2 ====
 
==== Question 2 ====

Revision as of 07:10, 4 July 2014