Fermi algebra
Here are collected some results related with the operator $\sigma$ which commutation with its adjoint $\ud{\sigma}$ reads:
$$\{\sigma,\ud{\sigma}\}=\mathbb{1}$$
(cf. Bose algebra).
A fairly general result is obtained with $\mu,\nu,\eta,\theta$ boolean variables (0 or 1), in which case the following general commutator reads in normal order (see here):
$$
[{\sigma}^{\dagger\mu}\sigma^\nu,{\sigma}^{\dagger\eta}\sigma^\theta]
=
\nu\theta(\eta-\mu)\sigma
+\mu\eta(\nu-\theta){\sigma}^\dagger
+[(1-\mu)\nu\eta(1-\theta)-\mu(1-\nu)(1-\eta)\theta](1-2{\sigma}^\dagger\sigma).
$$
This is a list of relations to normal-order the ladder operators of a two-level system, with $\mu, \nu\in\{0,1\}$:
- $[\ud{\sigma}\sigma,\ud{\sigma}^\mu\sigma^\nu]=(\mu-\nu)\ud{\sigma}^\mu\sigma^\nu$
- $[\sigma,\ud{\sigma}^\mu]=\mu(\mathbb{1}-2\ud{\sigma}^\mu\sigma)$
- $[\ud{\sigma},\sigma^\nu]=\nu(2\ud{\sigma}\sigma^\nu-\mathbb{1})$
- $[\sigma,\ud{\sigma}^\mu]\sigma^\nu=\mu\ud{\sigma}^{1-\mu}\sigma^\nu-2\mu(1-\nu)\ud{\sigma}^\mu\sigma^{1-\nu}$
- $\ud{\sigma}^\mu[\ud{\sigma},\sigma^\nu]=2(1-\mu)\nu\ud{\sigma}^{1-\mu}\sigma^\nu-\nu\ud{\sigma}^\mu\sigma^{1-\nu}$
- $\sigma^{\nu+1}=(1-\nu)\sigma^{1-\nu}$
- $\ud{\sigma}^{\mu+1}=(1-\mu)\ud{\sigma}^{1-\mu}$
- $\ud{\sigma}^{\mu+1}\sigma^{\nu+1}=(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu}$
- $\sigma^\nu\ud{\sigma}=\nu\mathbb{1}+(1-2\nu)\ud{\sigma}\sigma^\nu$
- $\sigma\ud{\sigma}^\mu=\mu\mathbb{1}+(1-2\mu)\ud{\sigma}^{\mu}\sigma$
- $\ud{\sigma}^\mu\sigma^\nu\ud{\sigma}=\nu\ud{\sigma}^\mu\sigma^{1-\nu}+(1-2\nu)(1-\mu)\ud{\sigma}^{1-\mu}\sigma^\nu$
- $\ud{\sigma}^\mu\sigma^\nu\ud{\sigma}=\nu\ud{\sigma}^\mu\sigma^{1-\nu}+(1-2\nu)(1-\mu)\ud{\sigma}^{1-\mu}\sigma^\nu$,
- $\ud{\sigma}\sigma\ud{\sigma}^\mu\sigma^\nu=\mu\ud{\sigma}^\mu\sigma^\nu+(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu}$,
- $\ud{\sigma}^\mu\sigma^\nu\ud{\sigma}\sigma=\nu\ud{\sigma}^\mu\sigma^\nu+(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu}$,
- $\sigma\ud{\sigma}^{1+\mu}\sigma^\nu=(1-\mu)\ud{\sigma}^\mu\sigma^\nu-(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu}$,
- $\ud{\sigma}^\mu{\sigma}^{1+\nu}\ud{\sigma}=(1-\nu)\ud{\sigma}^\mu\sigma^\nu-(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu}$,
- $\sigma\ud{\sigma}^\mu\sigma^\nu\ud{\sigma}=(1-\mu-\nu)(\ud{\sigma}^\mu\sigma^\nu-\ud{\sigma}^{1-\mu}\sigma^{1-\nu})$,
A condensed version appears in a footnote of my Electrodynamic's Wolverhampton Lectures on Physics.
I have written a piece of Mathematica code to check these results (and variations, if needed) semi-symbolically. This is detailed in this blog post.