Contents |
Here are collected some results related with the operator $a$ which commutation with its adjoint $\ud{a}$ reads:
$$\tag{1}[a,\ud{a}]=1$$
(cf. Fermi algebra)
I have written a Mathematica piece of code to compute such correlators automatically. I found out in this way formulas already known in the literature, in particular from the work of Blasiak[1][2]. You can download it to play with it (check or compute results useful in your daily quantum algebra). This is detailed in this blog post.
The basic rules are:
$$ \begin{align*} a\ket{n}&=\sqrt{n}\ket{n-1}\,,&\bra{n}\,&a=\bra{n+1}\sqrt{n+1}\,,\\ \ud{a}\ket{n}&=\sqrt{n+1}\ket{n+1}\,,&\bra{n}\,&\ud{a}=\bra{n-1}\sqrt{n}\,, \end{align*} $$
of which a general expression can be drawn:
$$a^{\dagger i}a^j a^{\dagger k}\ket{n}={(n+k)!\over(n+k-j)!}\sqrt{(n+i+k-j)!\over n!}\ket{n+i+k-j}\,.$$
Some particular cases:
$$ \begin{align*} \kern-1cm{(\mathrm{for}~i\le n+j)}\kern1cm a^i{\ud{a}}^j\ket{n}&={(n+j)!\over\sqrt{n!}\sqrt{(n+j-i)!}}\ket{n+j-i}\,,\\ \kern-1cm{(\mathrm{for}~i\le n)}\kern1cm a^{\dagger j}a^i\ket{n}&={\sqrt{n!}\sqrt{(n+j-i)!}\over(n-i)!}\ket{n+j-i}\,. \end{align*} $$
A general result, based on Wick theorem:
$$a^n\ud{a}^m=\sum_{k=0}^{\min(n,m)}k!\binom{m}{k}\binom{n}{k}\ud{a}^{m-k}a^{n-k}$$
Another one, inferred from my Mathematica notebook above, that could certainly be proved by recurrence or directly from combinatorics:
$$(a\ud{a})^n=\sum_{k=0}^n \left\{\begin{matrix} n\\k \end{matrix} \right\} \ud{a}^ka^k$$
where $\left\{\begin{matrix} n\\k \end{matrix} \right\}$ are the Stirling partition numbers (the number of ways to partition a set of $n$ objects into $k$ non-empty subsets). It is easy to obtain similar results in terms of generalized Stirling and Bell numbers for $(a^k\ud{l})^n$, which are results already provided by Blasiak.
$$a\ud{a}^n=\ud{a}^na+n\ud{a}^{n-1}$$ $$a^n\ud{a}=\ud{a}a^n+na^{n-1}$$
$$a\ud{a}a\ud{a}^k=\ud{a}^{k+1}a^2+(1+2k)\ud{a}^ka+k^2\ud{a}^{k-1}$$
$$a^l\ud{a}a\ud{a}=\ud{a}^2a^{l+1}+(1+2l)\ud{a}a^l+l^2a^{l-1}$$
$$a^{\dagger k}a^{l}aa^\dagger=a^{\dagger(k+1)}a^{l+1}+(1+l)a^{\dagger k}a^l$$
$$a^\dagger aa^{\dagger k}a^{l}=a^{\dagger(k+1)}a^{l+1}+ka^{\dagger k}a^l$$
$$a^{\dagger k}a^{l}a^\dagger a=a^{\dagger(k+1)}a^{l+1}+la^{\dagger k}a^l$$
$$aa^{\dagger k}a^la^\dagger=a^{\dagger(k+1)}a^{l+1}+(k+l+1)a^{\dagger k}a^l+kla^{\dagger(k-1)}a^{l-1}$$
$$(a^\dagger a)^2a^{\dagger k}a^l=a^{\dagger(k+2)}a^{l+2}+(1+2k)a^{\dagger(k+1)}a^{l+1}+k^2a^{\dagger k}a^l$$
$$a^{\dagger k}a^l(a^{\dagger}a)^2=a^{\dagger(k+2)}a^{l+2}+(1+2l)a^{\dagger(k+1)}a^{l+1}+l^2a^{\dagger k}a^l$$
A compilation of useful results derived from Eq.~(1):
We define $\hat n\equiv\ud{a}a$.
|
Special cases below
|