This page is still in progress.
Quantum Polaritonics
As light-matter superpositions, polaritons have an intrinsic quantum formulation. This page discusses quantum information processing with—and the nonclassical physics of—polaritons.
Some works take a safe stand and refer to "analogue qubits",[ 1] which could be useful although essentially classical objects or lacking important quantum features such as entanglement.
Related works
Squeezing in semiconductor microcavities in the strong-coupling regime . J. Ph. Karr , A. Baas , R. Houdré and E. Giacobino in Phys. Rev. A 69 :R031802 (2004 ).
Branch-entangled polariton pairs in planar microcavities and photonic wires . C. Ciuti in Phys. Rev. B 69 :245304 (2004 ).
Quantum Complementarity of Microcavity Polaritons . S. Savasta , O. Di Stefano , V. Savona and W. Langbein in Phys. Rev. Lett. 94 :246401 (2005 ).
Polariton correlation in microcavities produced by parametric scattering . W. Langbein in Phys. Stat. Sol. B 242 :2260 (2005 ).
Polariton quantum blockade in a photonic dot . A. Verger , C. Ciuti and I. Carusotto in Phys. Rev. B 73 :193306 (2006 ).
Highly Efficient Generation of Entangled Photons by Controlling Cavity Bipolariton States . H. Oka and H. Ishihara in Phys. Rev. Lett. 100 :170505 (2008 ).
Two-mode squeezing in polariton four-wave mixing . M. Romanelli , J. Ph. Karr , C. Leyder , E. Giacobino and A. Bramati in Phys. Rev. B 82 :155313 (2010 ).
Macroscopic quantum computation using Bose-Einstein condensates . T. Byrnes , K. Wen and Y. Yamamoto in Phys. Rev. A 85 :040306 (2012 ).
Neural networks using two-component Bose-Einstein condensates . T. Byrnes , S. Koyama , K. Yan K and Y. Yamamoto in Sci. Rep. 3 :2531 (2013 ).
Qubits Based on Polariton Rabi Oscillators . S. S. Demirchyan , I. Yu. Chestnov , A. P. Alodjants , M. M. Glazov and A. V. Kavokin in Phys. Rev. Lett. 112 :196403 (2014 ).
Polariton-generated intensity squeezing in semiconductor micropillars . T. Boulier , M. Bamba , A. Amo , C. Adrados , A. Lemaître , E. Galopin , I. Sagnes , J. Bloch , C. Ciuti , E. Giacobino and A. Bramati in Nature Comm. 5 :3260 (2014 ).
All optical controlled-NOT gate based on an exciton–polariton circuit . D. Solnyshkov , O. Bleu and G. Malpuech in Superlatt. Microstruct. 83 :466 (2015 ).
Exciton-polariton quantum gates based on continuous variables . O. Kyriienko and T. C. H. Liew in Phys. Rev. B 93 :035301 (2016 ).
Entanglement properties of quantum polaritons . D. G. Suárez-Forero , G. Cipagauta , H. Vinck-Posada , K. M. Fonseca Romero , B. A. Rodríguez and D. Ballarini in Phys. Rev. B 93 :205302 (2016 ).
First observation of the quantized exciton-polariton field and effect of interactions on a single polariton . A. Cuevas , J. C. López Carreño , B. Silva , M. De Giorgi , D. G. Suárez-Forero , C. Sánchez Muñoz , A. Fieramosca , F. Cardano , L. Marrucci , V. Tasco , G. Biasiol , E. del Valle , L. Dominici , D. Ballarini , G. Gigli , P. Mataloni , F. P. Laussy , F. Sciarrino and D. Sanvitto in Science Advances 4 :eaao6814 (2018 ).
Quantum exciton-polariton networks through inverse four-wave mixing . T. Liew and Y. Rubo in Phys. Rev. B 97 :041302 (2018 ).
Emergence of quantum correlations from interacting fibre-cavity polaritons . G. Muñoz-Matutano , A. Wood , M. Johnson , X. Vidal Asensio , B. Baragiola , A. Reinhard , A. Lemaître , J. Bloch , A. Amo , B. Besga , M. Richard and T. Volz in Nature Mater. 18 :213-218 (2019 ).
Towards polariton blockade of confined exciton–polaritons . A. Delteil , T. Fink , A. Schade , S. Höfling , C. Schneider and A. İmamoğlu in Nature Mater. 18 :219 (2019 ).
Polariton Exchange Interactions in Multichannel Optical Networks . M. Khazali , C. Murray and T. Pohl in Phys. Rev. Lett. 123 :113605 (2019 ).
Quantum hydrodynamics of a single particle . D. G. Suárez-Forero , V. Ardizzone , S. Filipe Covre da Silva , M. Reindl , A. Fieramosca , L. Polimeno , M. De Giorgi , L. Dominici , L. N. Pfeiffer , G. Gigli , D. Ballarini , F. Laussy , A. Rastelli and D. Sanvitto in Light: Sci. & App. 9 :85 (2020 ).
Quantum computing with exciton-polariton condensates . S. Ghosh and T. C. H. Liew in npj Quantum Inf. 6 :16 (2020 ).
Microcavity Polaritons for Quantum Simulation . T. Boulier , M. J. Jacquet , A. Maître , G. Lerario , F. Claude , S. Pigeon , Q. Glorieux , A. Amo , J. Bloch , A. Bramati and E. Giacobino in Adv. Quantum Technol. 3 : (2020 ).
Single-photon nonlinearity at room temperature . A. Zasedatelev , A. Baranikov , D. Sannikov , D. Urbonas , F. Scafirimuto , V. Shishkov , E. Andrianov , Y. Lozovik , U. Scherf , T. Stöferle , R. Mahrt and P. Lagoudakis in Nature 597 :493 (2021 ).
Split-ring polariton condensates as macroscopic two-level quantum systems . Y. Xue , I. Chestnov , E. Sedov , E. Kiktenko , A. K. Fedorov , S. Schumacher , X. Ma and A. Kavokin in Phys. Rev. Res. 3 :013099 (2021 ).
Quantifying Quantum Coherence in Polariton Condensates . C. Lüders , M. Pukrop , E. Rozas , C. Schneider , S. Höfling , J. Sperling , S. Schumacher and M. Aßmann in Phys. Rev. X Quantum 2 :030320 (2021 ).
Polariton condensates for classical and quantum computing . A. Kavokin , T. C. H. Liew , C. Schneider , P. G. Lagoudakis , S. Klembt and S. Hoefling in Nature Rev. Phys. 4 :435 (2022 ).
The future of quantum in polariton systems: opinion . T. C. H. Liew in Opt. Mater. Express 13 :1938 (2023 ).
Qubit gate operations in elliptically trapped polariton condensates . L. S. Ricco , I. A. Shelykh and A. Kavokin in Sci. Rep. 14 :4211 (2024 ).
Qubit analog with polariton superfluid in an annular trap . J. Barrat , A. F. Tzortzakakis , M. Niu , X. Zhou , G. G. Paschos , D. Petrosyan and P. G. Savvidis in Science Advances 10 :eado4042 (2024 ).
References