Loading web-font TeX/Math/Italic

Fermi algebra

Here are collected some results related with the operator \sigma which commutation with its adjoint \ud{\sigma} reads:

\{\sigma,\ud{\sigma}\}=\mathbb{1}

(cf. Bose algebra).

A fairly general result is obtained with \mu,\nu,\eta,\theta boolean variables (0 or 1), in which case the following general commutator reads in normal order (see here):

[{\sigma}^{\dagger\mu}\sigma^\nu,{\sigma}^{\dagger\eta}\sigma^\theta] = \nu\theta(\eta-\mu)\sigma +\mu\eta(\nu-\theta){\sigma}^\dagger +[(1-\mu)\nu\eta(1-\theta)-\mu(1-\nu)(1-\eta)\theta](1-2{\sigma}^\dagger\sigma).

This is a list of relations to normal-order the ladder operators of a two-level system, with \mu, \nu\in\{0,1\}:

  1. [\ud{\sigma}\sigma,\ud{\sigma}^\mu\sigma^\nu]=(\mu-\nu)\ud{\sigma}^\mu\sigma^\nu
  2. [\sigma,\ud{\sigma}^\mu]=\mu(\mathbb{1}-2\ud{\sigma}^\mu\sigma)
  3. [\ud{\sigma},\sigma^\nu]=\nu(2\ud{\sigma}\sigma^\nu-\mathbb{1})
  4. [\sigma,\ud{\sigma}^\mu]\sigma^\nu=\mu\ud{\sigma}^{1-\mu}\sigma^\nu-2\mu(1-\nu)\ud{\sigma}^\mu\sigma^{1-\nu}
  5. \ud{\sigma}^\mu[\ud{\sigma},\sigma^\nu]=2(1-\mu)\nu\ud{\sigma}^{1-\mu}\sigma^\nu-\nu\ud{\sigma}^\mu\sigma^{1-\nu}
  6. \sigma^{\nu+1}=(1-\nu)\sigma^{1-\nu}
  7. \ud{\sigma}^{\mu+1}=(1-\mu)\ud{\sigma}^{1-\mu}
  8. \ud{\sigma}^{\mu+1}\sigma^{\nu+1}=(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu}
  9. \sigma^\nu\ud{\sigma}=\nu\mathbb{1}+(1-2\nu)\ud{\sigma}\sigma^\nu
  10. \sigma\ud{\sigma}^\mu=\mu\mathbb{1}+(1-2\mu)\ud{\sigma}^{\mu}\sigma
  11. \ud{\sigma}^\mu\sigma^\nu\ud{\sigma}=\nu\ud{\sigma}^\mu\sigma^{1-\nu}+(1-2\nu)(1-\mu)\ud{\sigma}^{1-\mu}\sigma^\nu
  12. \ud{\sigma}^\mu\sigma^\nu\ud{\sigma}=\nu\ud{\sigma}^\mu\sigma^{1-\nu}+(1-2\nu)(1-\mu)\ud{\sigma}^{1-\mu}\sigma^\nu,
  13. \ud{\sigma}\sigma\ud{\sigma}^\mu\sigma^\nu=\mu\ud{\sigma}^\mu\sigma^\nu+(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu},
  14. \ud{\sigma}^\mu\sigma^\nu\ud{\sigma}\sigma=\nu\ud{\sigma}^\mu\sigma^\nu+(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu},
  15. \sigma\ud{\sigma}^{1+\mu}\sigma^\nu=(1-\mu)\ud{\sigma}^\mu\sigma^\nu-(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu},
  16. \ud{\sigma}^\mu{\sigma}^{1+\nu}\ud{\sigma}=(1-\nu)\ud{\sigma}^\mu\sigma^\nu-(1-\mu)(1-\nu)\ud{\sigma}^{1-\mu}\sigma^{1-\nu},
  17. \sigma\ud{\sigma}^\mu\sigma^\nu\ud{\sigma}=(1-\mu-\nu)(\ud{\sigma}^\mu\sigma^\nu-\ud{\sigma}^{1-\mu}\sigma^{1-\nu}),

A condensed version appears in a footnote of my Electrodynamic's Wolverhampton Lectures on Physics.

I have written a piece of Mathematica code to check these results (and variations, if needed) semi-symbolically. This is detailed in this blog post.