Loading web-font TeX/Math/Italic
This wikilog article is a draft, it was not published yet.

Statistics of multiphoton emission

⇠ Back to Blog:Science

Our last paper with Guillermo Díaz Camacho et al. on the dynamics of emission of multiphotons, in particular, of photon bundles (?!) involves a lot of complicated combinatoric formulas, such as the average time of detection for the kth photon from a N-photon Fock state that is spontaneously emitted with a radiative rate \gamma_a and measured by a detector with bandwidth \Gamma: \begin{multline} \langle t_{k}^{(N)} \rangle = 2 N! \left(\frac{\Gamma_+ \Gamma \gamma_a}{\Gamma_-^2}\right)^N \sum_{k_1 + k_2 + k_3\atop = N-k}\sum_{k_4 + \cdots+ k_9\atop = k-1} \sum_{k_{10} + k_{11}\atop = 2}\prod_{j=1}^{11}{1\over k_j!}\times\\ \frac{(-1)^{k_3 + k_6 + k_7 + k_8 + k_{11}}}{\gamma_a^{k_1 +k_4+k_7} \Gamma^{k_2+k_5+k_8} \left( \frac{\Gamma_+}{4} \right)^{k_3 + k_6 + k_9} \big( \gamma_a (k_1 + k_7+{k_{11}\over2}) +\Gamma( k_2 +k_8 +{k_{10}\over2}) + \frac{\Gamma_+}{2} (k_3+k_9)\big)^2 }\,. \end{multline}

Here I provide a Mathematica code to turn this general result into particular and limiting cases, and discuss briefly the whole thing. The formula is obtained by integration over the joint probability density function \phi_\Gamma for emitting the photons at times t_i, which we show in this paper is given by: \phi_\Gamma(t_1,\dots,t_N)=(-1)^{N}N!\gamma_a^N\left(\frac{\Gamma}{\Gamma_-}\right)^{2N }\prod_{i=1}^{N}\left[{d\over dt_i}({e^{-\gamma_a t_i}\over\gamma_a}+{e^{-\Gamma t_i}\over\Gamma}-4{e^{-\Gamma_+ t_i/2}\over\Gamma_+})\right]{\mathbf{1}}_{[t_{i-1}, t_{i+1}[}(t_{i})

where \Gamma_\pm\equiv\Gamma\pm\gamma_a. When tracing out all the photons to keep only the kth of interest, through some clever math hackery, we arrive to the computation of \int_0^\infty\left({e^{-\gamma_a t}\over\gamma_a}+{e^{-\Gamma t}\over\Gamma}-4{e^{-\Gamma_+ t/2}\over\Gamma_+}\right)^N\,dt which is easy to do with the multinomial theorem, which is where all the mad coefficients come from. The nice thing, of course, is that it covers all cases with a single formula, i.e., it can tell you about the 1st photon from a biphoton or the 7th photon from a 15-photon bundle. Now the direct calculation of these particular cases is a bit tedious. We can ask a formal computer language, like Mathematica, to do it. This is the generic expression to be summed over:

tkN[k1_, k2_, k3_, k4_, k5_, k6_, k7_, k8_, k9_, k10_, k11_] := 
 2 \[CapitalNu]! (((\[CapitalGamma] + \[Gamma]a) \[CapitalGamma] \
\[Gamma]a)/(\[CapitalGamma] - \[Gamma]a)^2)^\[CapitalNu] 1/(
  k1! k2! k3! k4! k5! k6! k7! k8! k9! k10! k11!) (-1)^(
  k3 + k6 + k7 + k8 + k11)/(\[Gamma]a^(k1 + k4 + k7) \[CapitalGamma]^(
   k2 + k5 + k8) ((\[CapitalGamma] + \[Gamma]a)/4)^(
   k3 + k6 + k9) (\[Gamma]a (k1 + k7 + k11/2) + \[CapitalGamma] (k2 + k8 + k10/
        2) + (\[CapitalGamma] + \[Gamma]a)/2 (k3 + k9))^2)

and defining the following module to provide all the ways to write an integer s as the sum of exactly k terms (possibly zero):

PartitionForMultinomialSum[n_, k_] := Module[{},
  Flatten[
   Permutations /@ (PadRight[#, k] & /@ 
      Select[IntegerPartitions[n], Length[#] <= k &]), 1]]

for instance,

In:= PartitionForMultinomialSum[3, 2]
 
Out= {{3, 0}, {0, 3}, {2, 1}, {1, 2}}

we can now compute, e.g., the average time of detection for the k=2nd photon from a N=3-photon bundle as:

In:= k = 2; \[CapitalNu] = 3;
In:= listkN = Flatten[Table[Flatten[{lk1, lk2, lk3}],
   {lk1, PartitionForMultinomialSum[\[CapitalNu] - k, 3]},
   {lk2, PartitionForMultinomialSum[k - 1, 6]},
   {lk3, PartitionForMultinomialSum[2, 2]}
   ], 3 - 1]
Out= {{1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0}, {1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 
  2}, {1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 1, 0, 0, 0, 0, 
  2, 0}, {1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2}, {1, 0, 0, 0, 1, 0, 0, 0, 
  0, 1, 1}, {1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0}, {1, 0, 0, 0, 0, 1, 0, 
  0, 0, 0, 2}, {1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 
  1, 0, 0, 2, 0}, {1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2}, {1, 0, 0, 0, 0, 
  0, 1, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0}, {1, 0, 0, 0, 
  0, 0, 0, 1, 0, 0, 2}, {1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1}, {1, 0, 0, 
  0, 0, 0, 0, 0, 1, 2, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2}, {1, 0, 
  0, 0, 0, 0, 0, 0, 1, 1, 1}, {0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0}, {0, 
  1, 0, 1, 0, 0, 0, 0, 0, 0, 2}, {0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 
  1}, {0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0}, {0, 1, 0, 0, 1, 0, 0, 0, 0, 
  0, 2}, {0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1}, {0, 1, 0, 0, 0, 1, 0, 0, 
  0, 2, 0}, {0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2}, {0, 1, 0, 0, 0, 1, 0, 
  0, 0, 1, 1}, {0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0}, {0, 1, 0, 0, 0, 0, 
  1, 0, 0, 0, 2}, {0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1}, {0, 1, 0, 0, 0, 
  0, 0, 1, 0, 2, 0}, {0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2}, {0, 1, 0, 0, 
  0, 0, 0, 1, 0, 1, 1}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0}, {0, 1, 0, 
  0, 0, 0, 0, 0, 1, 0, 2}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1}, {0, 0, 
  1, 1, 0, 0, 0, 0, 0, 2, 0}, {0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2}, {0, 
  0, 1, 1, 0, 0, 0, 0, 0, 1, 1}, {0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 
  0}, {0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2}, {0, 0, 1, 0, 1, 0, 0, 0, 0, 
  1, 1}, {0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0}, {0, 0, 1, 0, 0, 1, 0, 0, 
  0, 0, 2}, {0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1}, {0, 0, 1, 0, 0, 0, 1, 
  0, 0, 2, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2}, {0, 0, 1, 0, 0, 0, 
  1, 0, 0, 1, 1}, {0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0}, {0, 0, 1, 0, 0, 
  0, 0, 1, 0, 0, 2}, {0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 
  0, 0, 0, 0, 1, 2, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2}, {0, 0, 1, 
  0, 0, 0, 0, 0, 1, 1, 1}}
 
In=Simplify[Total[
  tkN[#[[1]], #[[2]], #[[3]], #[[4]], #[[5]], #[[6]], #[[7]], #[[
      8]], #[[9]], #[[10]], #[[11]]] & /@ listkN]]
Out[200]= (150 \[CapitalGamma]^8 + 2345 \[CapitalGamma]^7 \[Gamma]a + 
 14493 \[CapitalGamma]^6 \[Gamma]a^2 + 
 41371 \[CapitalGamma]^5 \[Gamma]a^3 + 
 58786 \[CapitalGamma]^4 \[Gamma]a^4 + 
 41371 \[CapitalGamma]^3 \[Gamma]a^5 + 
 14493 \[CapitalGamma]^2 \[Gamma]a^6 + 
 2345 \[CapitalGamma] \[Gamma]a^7 + 
 150 \[Gamma]a^8)/(6 \[CapitalGamma] \[Gamma]a (\[CapitalGamma] + \
\[Gamma]a) (2 \[CapitalGamma] + \[Gamma]a) (3 \[CapitalGamma] + \
\[Gamma]a) (5 \[CapitalGamma] + \[Gamma]a) (\[CapitalGamma] + 
   2 \[Gamma]a) (\[CapitalGamma] + 3 \[Gamma]a) (\[CapitalGamma] + 
   5 \[Gamma]a))

\langle t_2^{(3)} \rangle = \frac{\Big(150 \gamma_a^8 + 2345 \gamma_a^7 \Gamma +14493 \gamma_a^6 \Gamma^2 + 41371 \gamma_a^5 \Gamma^3 + 58786 \gamma_a^4 \Gamma^4 + 41371 \gamma_a^3 \Gamma^5 + 14493 \gamma_a^2 \Gamma^6 +2345 \gamma_a \Gamma^7 + 150 \Gamma^8\Big)}{6 \Gamma \gamma_a (\Gamma +\gamma_a) (2 \Gamma + \gamma_a) (\Gamma + 2 \gamma_a)(3 \Gamma + \gamma_a)(\Gamma + 3 \gamma_a) (5 \Gamma +\gamma_a) (\Gamma + 5\gamma_a)}

Maybe not particularly enlightening, but that is the result. This can also be written as a sum of inverse combinations of the two emission rates:

\langle t_1^{(1)} \rangle =\frac{2}{\Gamma +\gamma_a}+\frac{1}{\Gamma }+\frac{1}{\gamma_a}

\langle t_1^{(2)} \rangle =\frac{1}{8} \left(\frac{8}{\Gamma +\gamma_a}+\frac{9}{3 \Gamma +\gamma_a}+\frac{9}{\Gamma +3 \gamma_a}+\frac{4}{\Gamma }+\frac{4}{\gamma_a}\right)

\langle t_2^{(2)} \rangle =\frac{3}{8} \left(\frac{8}{\Gamma +\gamma_a}-\frac{3}{3 \Gamma +\gamma_a}-\frac{3}{\Gamma +3 \gamma_a}+\frac{4}{\Gamma }+\frac{4}{\gamma_a}\right)

\langle t_1^{(3)} \rangle =\frac{1}{243} \left(2 \left(\frac{62}{2 \Gamma +\gamma_a}+\frac{125}{5 \Gamma +\gamma_a}+\frac{62}{\Gamma +2\gamma_a}+\frac{125}{\Gamma +5 \gamma_a}+\frac{81}{\Gamma +\gamma_a}\right)+\frac{81}{\Gamma}+\frac{81}{\gamma_a}\right)

\langle t_2^{(3)} \rangle =\frac{1}{1944}\Bigg(\frac{3240}{\Gamma +\gamma_a}-\frac{1984}{2 \Gamma +\gamma_a}+\frac{6561}{3 \Gamma +\gamma_a}-\frac{4000}{5 \Gamma +\gamma_a}-\frac{1984}{\Gamma +2 \gamma_a}+\frac{6561}{\Gamma +3 \gamma_a}+{}\\{}-\frac{4000}{\Gamma +5 \gamma_a}+\frac{1620}{\Gamma }+\frac{1620}{\gamma_a}\Bigg)

\begin{multline} \langle t_3^{(3)} \rangle =\frac{1}{1944}\Bigg(\frac{7128}{\Gamma +\gamma_a}+\frac{992}{2 \Gamma +\gamma_a}-\frac{6561}{3 \Gamma +\gamma_a}+\frac{2000}{5 \Gamma +\gamma_a}+\frac{992}{\Gamma +2 \gamma_a}+{}\\{}-\frac{6561}{\Gamma +3 \gamma_a}+\frac{2000}{\Gamma +5 \gamma_a}+\frac{3564}{\Gamma }+\frac{3564}{\gamma_a}\Bigg) \end{multline}

This is the formula for the average of the squared time of the kth photon from a N-photon bundle:

\begin{multline} \langle \big(t_k^{(N)}\big)^2\rangle = \frac{2\gamma_a^N}{P(N,N)}\left( \frac{\Gamma}{\Gamma_-} \right)^{2N}k {N\choose k} \sum_{k_1+k_2+k_3=N-k}{N-k\choose k_1, k_2, k_3}\\{}\times \sum_{k_4+\cdots+k_9=k-1}{k-1\choose k_4, k_5, k_6, k_7,k_8,k_9} \sum_{k_{10}+k_{11}=2}{2\choose k_{10}, k_{11}}\\{}\times \frac{(-1)^{k_3 + k_6 + k_7 + k_{8}+k_{11}}}{\gamma_a^{k_1+k_4+k_7} \Gamma^{k_2+k_5+k_8} \left( \frac{\Gamma_+}{4} \right)^{k_3 + k_6 +k_9} ( \gamma_a (k_1+k_7+k_{11}/2) +\Gamma(k_2+k_8 +k_{10}/2) + \frac{\Gamma_+}{2} (k_3+k_9))^3} \end{multline}

\begin{tabular}{r|cccccccccc} &1&&&&&\hskip-.5cm $k$&&&&10\\ \hline 1&1 & & & & & & & & & \\ &${1\over2}$ & ${3\over2}$ & & & & & & & & \\[.1cm] &${1\over3}$ & ${5\over6}$ & ${11\over6}$ & & & & & & & \\[.1cm] &${1\over4}$ & ${7\over12}$ & ${13\over12}$ & $25\over12$ & & & & & & \\[.1cm] &${1\over5}$ & ${9\over20}$ & ${47\over60}$ & $77\over60$ & $137\over60$ & & & & & \\%[.1cm] \raisebox{.2cm}{$N$}&${1\over6}$ & ${11\over30}$ & ${37\over60}$ & $19\over20$ & $29\over20$ & $49\over20$ & & & & \\[.1cm] &${1\over7}$ & ${13\over42}$ & ${107\over210}$ & $319\over420$ & $153\over140$ & $223\over140$ & $363\over140$ & & & \\[.1cm] &${1\over8}$ & ${15\over56}$ & ${73\over168}$ & $533\over840$ & $743\over840$ & $341\over280$ & $481\over280$ & $761\over280$ & & \\[.1cm] &${1\over9}$ & ${17\over72}$ & ${191\over504}$ & $275\over504$ & $1879\over2520$ & $2509\over2520$ & $3349\over2520$ & $4609\over2520$ & $7129\over2520$ & \\[.1cm] 10&${1\over10}$ & ${19\over90}$ & ${121\over360}$ & $1207\over2520$ & $1627\over2520$ & $2131\over2520$ & $2761\over2520$ & $3601\over2520$ & $4861\over2520$ & $7381\over2520$ \\[.1cm] \end{tabular}