Microcavities: Difference between revisions
Fabrice P. Laussy's Web
mNo edit summary
Fabrice (talk | contribs)
m 1 revision imported
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{CustomHeader
{{CustomHeader
|image=http://localhost/laussywiki/images/5/5f/Microcavities-header2.png
|image=/images/5/5f/Microcavities-header2.png
|headertext=Microcavities
|headertext=Microcavities
|headercolor=white
|headercolor=white
Line 8: Line 8:
|blurbcolor=white|blurbcolorbackground=rgba(54, 25, 25, 0)
|blurbcolor=white|blurbcolorbackground=rgba(54, 25, 25, 0)
|blurbposition=bottom:275px;right:20px;font-size:36px;width:90%;text-align:left}}
|blurbposition=bottom:275px;right:20px;font-size:36px;width:90%;text-align:left}}
= Versions === 1st Edition ==Published {{thisday|20|December 20|2007}}. {{ISBN|978-0191527968}}=== Revised edition ===Published {{thisday|19|May|2011}}. {{ISBN|978-0199602278}}== 2nd Edition ==Published {{thisday|29|April|2017}}. {{ISBN|978-0191085864}}== 3rd Edition ==In preparation.= TOC =Of the last (2nd) edition:== Glossary ==
 
== §1 Overview of Microcavities ==<div class="mw-collapsible mw-collapsed">
= Versions =
# Properties of microcavities
 
## Q-factor and finesse
== 1st Edition ==
## Intracavity field enhancement and field distribution
 
## Tuneability and mode separation
Published {{thisday|20|December|2007}}. {{ISBN|978-0191527968}}
## Angular mode pattern
 
## Low-threshold lasing
=== Revised Edition ===
## Purcell factor and lifetimes
 
## Strong vs. weak coupling
Published {{thisday|19|May|2011}}. {{ISBN|978-0199602278}}
# Microcavity realizations
 
# Planar microcavities
== 2nd Edition ==
## Metal microcavities
 
## Dielectric Bragg mirrors
Published {{thisday|29|April|2017}}. {{ISBN|978-0191085864}}
# Spherical mirror microcavities
 
# Pillar microcavities
== 3rd Edition ==
# Whispering-gallery modes
 
## Two-dimensional whispering galleries
In preparation.
## Three-dimensional whispering-galleries
 
# Photonic-crystal cavities
= TOC =
## Random lasers
 
# Material systems
Of the last (2nd) edition:
## GaN microcavities
 
## ZnO microcavities
== Glossary ==
## Organic microcavities
<templatestyles src="listyle.css" />
## Transition metal chalcogenides (TMCs)
== §1 Overview of Microcavities ==
## Plasmonic nanocavities
<div class="mw-collapsible mw-collapsed">
# Microcavity lasers
<ol class="counter-top" style="counter-reset: section 1;">
# Conclusion
  <li class="counter-item">Properties of microcavities
    <ol class="counter-sublist">
      <li class="counter-subitem">Q-factor and finesse</li>
      <li class="counter-subitem">Intracavity field enhancement and field distribution</li>
      <li class="counter-subitem">Tuneability and mode separation</li>
      <li class="counter-subitem">Angular mode pattern</li>
      <li class="counter-subitem">Low-threshold lasing</li>
      <li class="counter-subitem">Purcell factor and lifetimes</li>
      <li class="counter-subitem">Strong vs. weak coupling</li>
    </ol>
  </li>
  <li class="counter-item">Microcavity realizations</li>
  <li class="counter-item">Planar microcavities
    <ol class="counter-sublist">
      <li class="counter-subitem">Metal microcavities</li>
      <li class="counter-subitem">Dielectric Bragg mirrors</li>
    </ol>
  </li>
  <li class="counter-item">Spherical mirror microcavities</li>
  <li class="counter-item">Pillar microcavities</li>
  <li class="counter-item">Whispering-gallery modes
    <ol class="counter-sublist">
      <li class="counter-subitem">Two-dimensional whispering galleries</li>
      <li class="counter-subitem">Three-dimensional whispering-galleries</li>
    </ol>
  </li>
  <li class="counter-item">Photonic-crystal cavities
    <ol class="counter-sublist">
      <li class="counter-subitem">Random lasers</li>
    </ol>
  </li>
  <li class="counter-item">Material systems
    <ol class="counter-sublist">
      <li class="counter-subitem">GaN microcavities</li>
      <li class="counter-subitem">ZnO microcavities</li>
      <li class="counter-subitem">Organic microcavities</li>
      <li class="counter-subitem">Transition metal chalcogenides (TMCs)</li>
      <li class="counter-subitem">Plasmonic nanocavities</li>
    </ol>
  </li>
  <li class="counter-item">Microcavity lasers</li>
  <li class="counter-item">Conclusion</li>
</ol>
</div>
</div>


== §2 Classical description of light ==<div class="mw-collapsible mw-collapsed">
== §2 Classical description of light ==
# Free space
<div class="mw-collapsible mw-collapsed">
## Light-field dynamics in free space
<ol class="counter-top" style="counter-reset: section 2;">
# Propagation in crystals
  <li class="counter-item">Free space
## Plane waves in bulk crystals
    <ol class="counter-sublist">
## Absorption of light
      <li class="counter-subitem">Light-field dynamics in free space</li>
## Kramers–Kronig relations
    </ol>
# Coherence
  </li>
## Statistical properties of light
  <li class="counter-item">Propagation in crystals
## Spatial and temporal coherence
    <ol class="counter-sublist">
## Wiener–Khinchin theorem
      <li class="counter-subitem">Plane waves in bulk crystals</li>
## Hanbury Brown–Twiss effect
      <li class="counter-subitem">Absorption of light</li>
# Polarisation-dependent optical effects
      <li class="counter-subitem">Kramers–Kronig relations</li>
## Birefringence
    </ol>
## Magneto-optical effects
  </li>
# Propagation of light in multilayer planar structures
  <li class="counter-item">Coherence
# Photonic eigenmodes of planar systems
    <ol class="counter-sublist">
## Photonic bands of 1D periodic structures
      <li class="counter-subitem">Statistical properties of light</li>
# Planar microcavities
      <li class="counter-subitem">Spatial and temporal coherence</li>
# Tamm plasmons and photonic Tamm states
      <li class="counter-subitem">Wiener–Khinchin theorem</li>
# Stripes, pillars, and spheres: photonic wires and dots
      <li class="counter-subitem">Hanbury Brown–Twiss effect</li>
## Cylinders and pillar cavities
    </ol>
## Spheres
  </li>
# Further reading
  <li class="counter-item">Polarisation-dependent optical effects
    <ol class="counter-sublist">
      <li class="counter-subitem">Birefringence</li>
      <li class="counter-subitem">Magneto-optical effects</li>
    </ol>
  </li>
  <li class="counter-item">Propagation of light in multilayer planar structures</li>
  <li class="counter-item">Photonic eigenmodes of planar systems
    <ol class="counter-sublist">
      <li class="counter-subitem">Photonic bands of 1D periodic structures</li>
    </ol>
  </li>
  <li class="counter-item">Planar microcavities</li>
  <li class="counter-item">Tamm plasmons and photonic Tamm states</li>
  <li class="counter-item">Stripes, pillars, and spheres: photonic wires and dots
    <ol class="counter-sublist">
      <li class="counter-subitem">Cylinders and pillar cavities</li>
      <li class="counter-subitem">Spheres</li>
    </ol>
  </li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>
== §3 Quantum description of light ==
== §3 Quantum description of light ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Pictures of quantum mechanics
<ol class="counter-top" style="counter-reset: section 3;">
## Historical background
  <li class="counter-item">Pictures of quantum mechanics
## Schrödinger picture
    <ol class="counter-sublist">
## Antisymmetry of the wavefunction
      <li class="counter-subitem">Historical background</li>
## Symmetry of the wavefunction
      <li class="counter-subitem">Schrödinger picture</li>
## Heisenberg picture
      <li class="counter-subitem">Antisymmetry of the wavefunction</li>
## Dirac (interaction) picture
      <li class="counter-subitem">Symmetry of the wavefunction</li>
# Other formulations
      <li class="counter-subitem">Heisenberg picture</li>
## Density matrix and Liouvillian
      <li class="counter-subitem">Dirac (interaction) picture</li>
## Second quantization
    </ol>
## Quantization of the light field
  </li>
# Quantum states
  <li class="counter-item">Other formulations
## Fock states
    <ol class="counter-sublist">
## Coherent states
      <li class="counter-subitem">Density matrix and Liouvillian</li>
## Glauber–Sudarshan representation
      <li class="counter-subitem">Second quantization</li>
## Thermal states
      <li class="counter-subitem">Quantization of the light field</li>
## Mixture states
    </ol>
## Power spectrum
  </li>
## g(2) and other Glauber correlators
  <li class="counter-item">Quantum states
## Polarisation
    <ol class="counter-sublist">
# Outlook on quantum mechanics for microcavities
      <li class="counter-subitem">Fock states</li>
# Further reading
      <li class="counter-subitem">Coherent states</li>
      <li class="counter-subitem">Glauber–Sudarshan representation</li>
      <li class="counter-subitem">Thermal states</li>
      <li class="counter-subitem">Mixture states</li>
      <li class="counter-subitem">Power spectrum</li>
      <li class="counter-subitem">g(2) and other Glauber correlators</li>
      <li class="counter-subitem">Polarisation</li>
    </ol>
  </li>
  <li class="counter-item">Outlook on quantum mechanics for microcavities</li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>
== §4 Semiclassical description of light–matter coupling ==
== §4 Semiclassical description of light–matter coupling ==
<div class="mw-collapsible mw-collapsed">
<div class="mw-collapsible mw-collapsed">
# Light–matter interaction
<ol class="counter-top" style="counter-reset: section 4;">
## Classical limit
  <li class="counter-item">Light–matter interaction
## Einstein coefficients
    <ol class="counter-sublist">
# Optical transitions in semiconductors
      <li class="counter-subitem">Classical limit</li>
# Excitons in semiconductors
      <li class="counter-subitem">Einstein coefficients</li>
## Frenkel and Wannier–Mott excitons
    </ol>
## Excitons in confined systems
  </li>
## Quantum wells
  <li class="counter-item">Optical transitions in semiconductors</li>
## Quantum wires and dots
  <li class="counter-item">Excitons in semiconductors
# Exciton–photon coupling
    <ol class="counter-sublist">
## Surface polaritons
      <li class="counter-subitem">Frenkel and Wannier–Mott excitons</li>
## Exciton–photon coupling in quantum wells
      <li class="counter-subitem">Excitons in confined systems</li>
## Exciton–photon coupling in quantum wires and dots
      <li class="counter-subitem">Quantum wells</li>
## Dispersion of polaritons in planar microcavities
      <li class="counter-subitem">Quantum wires and dots</li>
## Motional narrowing of cavity polaritons
    </ol>
## Microcavities with quantum wires or dots
  </li>
  <li class="counter-item">Exciton–photon coupling
    <ol class="counter-sublist">
      <li class="counter-subitem">Surface polaritons</li>
      <li class="counter-subitem">Exciton–photon coupling in quantum wells</li>
      <li class="counter-subitem">Exciton–photon coupling in quantum wires and dots</li>
      <li class="counter-subitem">Dispersion of polaritons in planar microcavities</li>
      <li class="counter-subitem">Motional narrowing of cavity polaritons</li>
      <li class="counter-subitem">Microcavities with quantum wires or dots</li>
    </ol>
  </li>
</ol>
</div>
</div>


== §5 Quantum description of light–matter coupling ==<div class="mw-collapsible mw-collapsed">
== §5 Quantum description of light–matter coupling ==
# Historical background
<div class="mw-collapsible mw-collapsed">
# Rabi dynamics
<ol class="counter-top" style="counter-reset: section 5;">
# Bloch equations
  <li class="counter-item">Historical background</li>
# Full quantum picture
  <li class="counter-item">Rabi dynamics</li>
## Light–Matter interaction Hamiltonian
  <li class="counter-item">Bloch equations</li>
## Dressed bosons
  <li class="counter-item">Full quantum picture
## Josephson coupling
    <ol class="counter-sublist">
## Jaynes–Cummings model
      <li class="counter-subitem">Light–Matter interaction Hamiltonian</li>
## Dicke model
      <li class="counter-subitem">Dressed bosons</li>
# Lindblad dissipation
      <li class="counter-subitem">Josephson coupling</li>
# Quantum dynamics with decay and pumping
      <li class="counter-subitem">Jaynes–Cummings model</li>
## Single-time dynamics of coupled Bose fields
      <li class="counter-subitem">Dicke model</li>
## Two-time dynamics of coupled Bose fields
    </ol>
## The two-level system coupled to a Bose field
  </li>
# Excitons in semiconductors
  <li class="counter-item">Lindblad dissipation</li>
## Quantization of the exciton field
  <li class="counter-item">Quantum dynamics with decay and pumping
## Excitons as bosons
    <ol class="counter-sublist">
## Excitons in quantum dots
      <li class="counter-subitem">Single-time dynamics of coupled Bose fields</li>
# Exciton–photon coupling
      <li class="counter-subitem">Two-time dynamics of coupled Bose fields</li>
## Polariton splitting
      <li class="counter-subitem">The two-level system coupled to a Bose field</li>
## The polariton Hamiltonian
    </ol>
  </li>
  <li class="counter-item">Excitons in semiconductors
    <ol class="counter-sublist">
      <li class="counter-subitem">Quantization of the exciton field</li>
      <li class="counter-subitem">Excitons as bosons</li>
      <li class="counter-subitem">Excitons in quantum dots</li>
    </ol>
  </li>
  <li class="counter-item">Exciton–photon coupling
    <ol class="counter-sublist">
      <li class="counter-subitem">Polariton splitting</li>
      <li class="counter-subitem">The polariton Hamiltonian</li>
    </ol>
  </li>
</ol>
</div>
</div>


== §6 Weak-coupling microcavities ==<div class="mw-collapsible mw-collapsed">
== §6 Weak-coupling microcavities ==
# Purcell effect
<div class="mw-collapsible mw-collapsed">
## The physics of weak coupling
<ol class="counter-top" style="counter-reset: section 6;">
## Spontaneous emission
  <li class="counter-item">Purcell effect
## Quantum Dots, 2D excitons and 2D electron–hole pairs
    <ol class="counter-sublist">
## Fermi’s golden rule
      <li class="counter-subitem">The physics of weak coupling</li>
## Dynamics of the Purcell effect
      <li class="counter-subitem">Spontaneous emission</li>
## Experimental realizations
      <li class="counter-subitem">Quantum Dots, 2D excitons and 2D electron–hole pairs</li>
# Lasers
      <li class="counter-subitem">Fermi’s golden rule</li>
## The physics of lasers
      <li class="counter-subitem">Dynamics of the Purcell effect</li>
## Semiconductors in laser physics
      <li class="counter-subitem">Experimental realizations</li>
## Vertical-cavity surface-emitting lasers
    </ol>
## Resonant-cavity LEDs
  </li>
## Quantum theory of the laser
  <li class="counter-item">Lasers
# Nonlinear optical properties of weak-coupling microcavities
    <ol class="counter-sublist">
## Bistability
      <li class="counter-subitem">The physics of lasers</li>
## Phase matching
      <li class="counter-subitem">Semiconductors in laser physics</li>
# Conclusion
      <li class="counter-subitem">Vertical-cavity surface-emitting lasers</li>
      <li class="counter-subitem">Resonant-cavity LEDs</li>
      <li class="counter-subitem">Quantum theory of the laser</li>
    </ol>
  </li>
  <li class="counter-item">Nonlinear optical properties of weak-coupling microcavities
    <ol class="counter-sublist">
      <li class="counter-subitem">Bistability</li>
      <li class="counter-subitem">Phase matching</li>
    </ol>
  </li>
  <li class="counter-item">Conclusion</li>
</ol>
</div>
</div>


== §7 Strong-coupling: resonant effects ==<div class="mw-collapsible mw-collapsed">
== §7 Strong-coupling: resonant effects ==
# Optical properties: background
<div class="mw-collapsible mw-collapsed">
## Quantum well microcavities
<ol class="counter-top" style="counter-reset: section 7;">
## Variations on a theme
  <li class="counter-item">Optical properties: background
## Motional narrowing
    <ol class="counter-sublist">
## Ultra-strong coupling in THz cavities
      <li class="counter-subitem">Quantum well microcavities</li>
## Polariton emission
      <li class="counter-subitem">Variations on a theme</li>
# Near-resonant-pumped optical nonlinearities
      <li class="counter-subitem">Motional narrowing</li>
## Pulsed stimulated scattering
      <li class="counter-subitem">Ultra-strong coupling in THz cavities</li>
## Quasimode theory of parametric amplification
      <li class="counter-subitem">Polariton emission</li>
## Microcavity parametric oscillators
    </ol>
# Resonant excitation case and parametric amplification
  </li>
## Semiclassical description
  <li class="counter-item">Near-resonant-pumped optical nonlinearities
## Stationary solution and threshold
    <ol class="counter-sublist">
## Theoretical approach: quantum model
      <li class="counter-subitem">Pulsed stimulated scattering</li>
## Three-level model
      <li class="counter-subitem">Quasimode theory of parametric amplification</li>
## Threshold
      <li class="counter-subitem">Microcavity parametric oscillators</li>
# Two-beam experiment
    </ol>
## One-beam experiment and spontaneous symmetry breaking
  </li>
## Dressing of the dispersion induced by polariton condensates
  <li class="counter-item">Resonant excitation case and parametric amplification
## Bistable behaviour
    <ol class="counter-sublist">
# Propagation of polaritons
      <li class="counter-subitem">Semiclassical description</li>
## Polariton wavepackets
      <li class="counter-subitem">Stationary solution and threshold</li>
## Self-accelerating and self-interfering wavepackets
      <li class="counter-subitem">Theoretical approach: quantum model</li>
## Superfluid propagation
      <li class="counter-subitem">Three-level model</li>
## Elementary excitation of resonantly pumped polaritons
      <li class="counter-subitem">Threshold</li>
## Conventional and unconventional polariton superfluidity
    </ol>
## High-density effects: the polariton backjet
  </li>
  <li class="counter-item">Two-beam experiment
    <ol class="counter-sublist">
      <li class="counter-subitem">One-beam experiment and spontaneous symmetry breaking</li>
      <li class="counter-subitem">Dressing of the dispersion induced by polariton condensates</li>
      <li class="counter-subitem">Bistable behaviour</li>
    </ol>
  </li>
  <li class="counter-item">Propagation of polaritons
    <ol class="counter-sublist">
      <li class="counter-subitem">Polariton wavepackets</li>
      <li class="counter-subitem">Self-accelerating and self-interfering wavepackets</li>
      <li class="counter-subitem">Superfluid propagation</li>
      <li class="counter-subitem">Elementary excitation of resonantly pumped polaritons</li>
      <li class="counter-subitem">Conventional and unconventional polariton superfluidity</li>
      <li class="counter-subitem">High-density effects: the polariton backjet</li>
    </ol>
  </li>
</ol>
</div>
</div>


== §8 Strong-coupling: polariton Bose condensation ==<div class="mw-collapsible mw-collapsed">
== §8 Strong-coupling: polariton Bose condensation ==
#Introduction
<div class="mw-collapsible mw-collapsed">
# Basic ideas about Bose–Einstein condensation
<ol class="counter-top" style="counter-reset: section 8;">
## Einstein proposal
  <li class="counter-item">Introduction</li>
## Experimental realization
  <li class="counter-item">Basic ideas about Bose–Einstein condensation
## Modern definition of Bose–Einstein condensation
    <ol class="counter-sublist">
# Specificities of excitons and polaritons
      <li class="counter-subitem">Einstein proposal</li>
## Thermodynamic properties of cavity polaritons
      <li class="counter-subitem">Experimental realization</li>
## Interacting bosons and Bogoliubov model
      <li class="counter-subitem">Modern definition of Bose–Einstein condensation</li>
## Polariton superfluidity
    </ol>
## Quasicondensation and local effects
  </li>
# Kinetics of formation of polariton condensates: semiclassical picture
  <li class="counter-item">Specificities of excitons and polaritons
## Qualitative features
    <ol class="counter-sublist">
## The semiclassical Boltzmann equation
      <li class="counter-subitem">Thermodynamic properties of cavity polaritons</li>
## Numerical solution of Boltzmann equations, practical aspects
      <li class="counter-subitem">Interacting bosons and Bogoliubov model</li>
## Effective scattering rates
      <li class="counter-subitem">Polariton superfluidity</li>
## From thermodynamic to kinetic regime
      <li class="counter-subitem">Quasicondensation and local effects</li>
# Kinetics of formation of polariton condensates: quantum picture in the Born–Markov approximation
    </ol>
## Density matrix dynamics of the ground-state
  </li>
## Discussion
  <li class="counter-item">Kinetics of formation of polariton condensates: semiclassical picture
## Coherence dynamics
    <ol class="counter-sublist">
# Kinetics of formation of polariton condensates: quantum picture beyond the Born–Markov approximation
      <li class="counter-subitem">Qualitative features</li>
## Two-oscillator toy theory
      <li class="counter-subitem">The semiclassical Boltzmann equation</li>
## Coherence of polariton laser emission
      <li class="counter-subitem">Numerical solution of Boltzmann equations, practical aspects</li>
## Numerical simulations
      <li class="counter-subitem">Effective scattering rates</li>
## Order parameter and phase diffusion coefficient
      <li class="counter-subitem">From thermodynamic to kinetic regime</li>
# Spatial dynamics of polariton condensates
    </ol>
## Gross–Pitaevskii equation
  </li>
## Modified Gross–Pitaevskii equations
  <li class="counter-item">Kinetics of formation of polariton condensates: quantum picture in the Born–Markov approximation
## Bogolon dispersion
    <ol class="counter-sublist">
## Spatial coherence. The thermal fluctuation effect
      <li class="counter-subitem">Density matrix dynamics of the ground-state</li>
# Experiments on Bose–Einstein condensation, superfluidity and lasing of polaritons
      <li class="counter-subitem">Discussion</li>
## Experimental observation
      <li class="counter-subitem">Coherence dynamics</li>
## Polariton lasing vs Bose–Einstein condensation
    </ol>
## Polariton diodes
  </li>
## Experiments on superfluidity
  <li class="counter-item">Kinetics of formation of polariton condensates: quantum picture beyond the Born–Markov approximation
# Polariton billiard
    <ol class="counter-sublist">
# Superconductivity mediated by exciton-polaritons
      <li class="counter-subitem">Two-oscillator toy theory</li>
# Further reading
      <li class="counter-subitem">Coherence of polariton laser emission</li>
      <li class="counter-subitem">Numerical simulations</li>
      <li class="counter-subitem">Order parameter and phase diffusion coefficient</li>
    </ol>
  </li>
  <li class="counter-item">Spatial dynamics of polariton condensates
    <ol class="counter-sublist">
      <li class="counter-subitem">Gross–Pitaevskii equation</li>
      <li class="counter-subitem">Modified Gross–Pitaevskii equations</li>
      <li class="counter-subitem">Bogolon dispersion</li>
      <li class="counter-subitem">Spatial coherence. The thermal fluctuation effect</li>
    </ol>
  </li>
  <li class="counter-item">Experiments on Bose–Einstein condensation, superfluidity and lasing of polaritons
    <ol class="counter-sublist">
      <li class="counter-subitem">Experimental observation</li>
      <li class="counter-subitem">Polariton lasing vs Bose–Einstein condensation</li>
      <li class="counter-subitem">Polariton diodes</li>
      <li class="counter-subitem">Experiments on superfluidity</li>
    </ol>
  </li>
  <li class="counter-item">Polariton billiard</li>
  <li class="counter-item">Superconductivity mediated by exciton-polaritons</li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>


== §9 Spin and polarization ==<div class="mw-collapsible mw-collapsed">
== §9 Spin and polarization ==
# Introduction
<div class="mw-collapsible mw-collapsed">
# Spin relaxation of electrons, holes and excitons in semiconductors
<ol class="counter-top" style="counter-reset: section 9;">
# Microcavities in the presence of a magnetic field
  <li class="counter-item">Introduction</li>
# Resonant Faraday rotation
  <li class="counter-item">Spin relaxation of electrons, holes and excitons in semiconductors</li>
# Spin relaxation of exciton-polaritons in microcavities: experiment
  <li class="counter-item">Microcavities in the presence of a magnetic field</li>
# Spin relaxation of exciton-polaritons in microcavities: theory
  <li class="counter-item">Resonant Faraday rotation</li>
# Optical spin Hall effect
  <li class="counter-item">Spin relaxation of exciton-polaritons in microcavities: experiment</li>
# Full Poincaré beams and polarisation shaping in microcavities
  <li class="counter-item">Spin relaxation of exciton-polaritons in microcavities: theory</li>
# Optically induced Faraday rotation
  <li class="counter-item">Optical spin Hall effect</li>
# Interplay between spin and energy relaxation of exciton-polaritons
  <li class="counter-item">Full Poincaré beams and polarisation shaping in microcavities</li>
# Polarisation of Bose condensates and polariton superfluids
  <li class="counter-item">Optically induced Faraday rotation</li>
# Magnetic-field effect and superfluidity
  <li class="counter-item">Interplay between spin and energy relaxation of exciton-polaritons</li>
# Finite-temperature case
  <li class="counter-item">Polarisation of Bose condensates and polariton superfluids</li>
# Stationary states of spinor condensates
  <li class="counter-item">Magnetic-field effect and superfluidity</li>
# Conclusions
  <li class="counter-item">Finite-temperature case</li>
# Further reading
  <li class="counter-item">Stationary states of spinor condensates</li>
  <li class="counter-item">Conclusions</li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>


== §10 Quantum fluids of light ==<div class="mw-collapsible mw-collapsed">
== §10 Quantum fluids of light ==
# Introduction
<div class="mw-collapsible mw-collapsed">
# Topological excitations in quantum fluids of light
<ol class="counter-top" style="counter-reset: section 10;">
## Topological defects in scalar condensates
  <li class="counter-item">Introduction</li>
## Interaction with a static defect; superfluidity and topology
  <li class="counter-item">Topological excitations in quantum fluids of light
# Half-integer topological defects in spinor quantum fluids
    <ol class="counter-sublist">
## Introduction
      <li class="counter-subitem">Topological defects in scalar condensates</li>
## Half-vortices
      <li class="counter-subitem">Interaction with a static defect; superfluidity and topology</li>
## Half-solitons
    </ol>
# Hydrodynamic generation of oblique half-solitons and half-vortices
  </li>
# Spin Bifurcation Theory (Broken Parity)
  <li class="counter-item">Half-integer topological defects in spinor quantum fluids
## Paramagnetic solutions
    <ol class="counter-sublist">
## Ferromagnetic solutions
      <li class="counter-subitem">Introduction</li>
# Engineering of the polariton band structure
      <li class="counter-subitem">Half-vortices</li>
## Introduction
      <li class="counter-subitem">Half-solitons</li>
## Wire Cavities
    </ol>
## Single Pillars and molecules
  </li>
## Lattices: A few basics about 1D lattices
  <li class="counter-item">Hydrodynamic generation of oblique half-solitons and half-vortices</li>
## Bright- and gap-solitons in 1D polariton systems
  <li class="counter-item">Spin Bifurcation Theory (Broken Parity)
## Honeycomb lattice (scalar approximation)
    <ol class="counter-sublist">
## Honeycomb lattice (polarized)
      <li class="counter-subitem">Paramagnetic solutions</li>
## Polariton topological insulators
      <li class="counter-subitem">Ferromagnetic solutions</li>
# Further reading
    </ol>
  </li>
  <li class="counter-item">Engineering of the polariton band structure
    <ol class="counter-sublist">
      <li class="counter-subitem">Introduction</li>
      <li class="counter-subitem">Wire Cavities</li>
      <li class="counter-subitem">Single Pillars and molecules</li>
      <li class="counter-subitem">Lattices: A few basics about 1D lattices</li>
      <li class="counter-subitem">Bright- and gap-solitons in 1D polariton systems</li>
      <li class="counter-subitem">Honeycomb lattice (scalar approximation)</li>
      <li class="counter-subitem">Honeycomb lattice (polarized)</li>
      <li class="counter-subitem">Polariton topological insulators</li>
    </ol>
  </li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>


== §11 Quantum polaritonics ==<div class="mw-collapsible mw-collapsed">
== §11 Quantum polaritonics ==
# Microcavity QED
<div class="mw-collapsible mw-collapsed">
## Quantum vs classical polaritons
<ol class="counter-top" style="counter-reset: section 11;">
## Control of polariton Rabi oscillations
  <li class="counter-item">Microcavity QED
## Polariton squeezing
    <ol class="counter-sublist">
## Polariton statistics
      <li class="counter-subitem">Quantum vs classical polaritons</li>
## Polariton entanglement
      <li class="counter-subitem">Control of polariton Rabi oscillations</li>
# Polariton blockade
      <li class="counter-subitem">Polariton squeezing</li>
## Jaynes–Cummings blockade
      <li class="counter-subitem">Polariton statistics</li>
## Kerr blockade
      <li class="counter-subitem">Polariton entanglement</li>
## Unconventional blockade
    </ol>
# Frequency-resolved photon correlations
  </li>
## Photo-detection theory
  <li class="counter-item">Polariton blockade
## The sensor method
    <ol class="counter-sublist">
## Two-photon spectra
      <li class="counter-subitem">Jaynes–Cummings blockade</li>
# N–photon emitters
      <li class="counter-subitem">Kerr blockade</li>
## Super-Rabi oscillations
      <li class="counter-subitem">Unconventional blockade</li>
## Robust Jaynes–Cummings resonances
    </ol>
## Bundles of photons
  </li>
## Yudson representation
  <li class="counter-item">Frequency-resolved photon correlations
# Exciting with Quantum Light
    <ol class="counter-sublist">
## Cascaded formalism
      <li class="counter-subitem">Photo-detection theory</li>
## Exciting simple targets
      <li class="counter-subitem">The sensor method</li>
## Mollow spectroscopy
      <li class="counter-subitem">Two-photon spectra</li>
# Quantum Information Processing
    </ol>
## Quantum Computation
  </li>
## Limits of Quantum Computation
  <li class="counter-item">N–photon emitters
## Quantum Annealing
    <ol class="counter-sublist">
## Polariton simulator
      <li class="counter-subitem">Super-Rabi oscillations</li>
## Other paradigms
      <li class="counter-subitem">Robust Jaynes–Cummings resonances</li>
# Future prospects and reading
      <li class="counter-subitem">Bundles of photons</li>
      <li class="counter-subitem">Yudson representation</li>
    </ol>
  </li>
  <li class="counter-item">Exciting with Quantum Light
    <ol class="counter-sublist">
      <li class="counter-subitem">Cascaded formalism</li>
      <li class="counter-subitem">Exciting simple targets</li>
      <li class="counter-subitem">Mollow spectroscopy</li>
    </ol>
  </li>
  <li class="counter-item">Quantum Information Processing
    <ol class="counter-sublist">
      <li class="counter-subitem">Quantum Computation</li>
      <li class="counter-subitem">Limits of Quantum Computation</li>
      <li class="counter-subitem">Quantum Annealing</li>
      <li class="counter-subitem">Polariton simulator</li>
      <li class="counter-subitem">Other paradigms</li>
    </ol>
  </li>
  <li class="counter-item">Future prospects and reading</li>
</ol>
</div>
</div>


== §12 Polariton devices ==<div class="mw-collapsible mw-collapsed">
== §12 Polariton devices ==
# Polariton lasers
<div class="mw-collapsible mw-collapsed">
## Concept of polariton lasing
<ol class="counter-top" style="counter-reset: section 12;">
## Realization of polariton lasers in semiconductor microcavities
  <li class="counter-item">Polariton lasers
# Polariton lasers with electrical injection
    <ol class="counter-sublist">
## Experimental manifestations
      <li class="counter-subitem">Concept of polariton lasing</li>
## Weak lasing
      <li class="counter-subitem">Realization of polariton lasers in semiconductor microcavities</li>
# Polariton terahertz lasers
    </ol>
## Variety of proposals
  </li>
## Polariton terahertz lasers with two-photon excitation
  <li class="counter-item">Polariton lasers with electrical injection
## Superradiant emission of terahertz radiation by dipolaritons
    <ol class="counter-sublist">
# Bosonic cascade lasers
      <li class="counter-subitem">Experimental manifestations</li>
## The Boltzmann dynamics of bosonic cascades
      <li class="counter-subitem">Weak lasing</li>
## Quantum model of a bosonic cascade laser
    </ol>
# Spatial dynamics of polariton lasing structures
  </li>
## Pattern formation
  <li class="counter-item">Polariton terahertz lasers
## Control of lasing modes in structured potentials
    <ol class="counter-sublist">
## Bistability and polariton condensate memories
      <li class="counter-subitem">Variety of proposals</li>
## Polariton quantum random number generators
      <li class="counter-subitem">Polariton terahertz lasers with two-photon excitation</li>
# Polariton condensate transistors and optical circuits
      <li class="counter-subitem">Superradiant emission of terahertz radiation by dipolaritons</li>
## Polariton transistors
    </ol>
## Polariton neurons
  </li>
# Conclusions
  <li class="counter-item">Bosonic cascade lasers
# Further reading
    <ol class="counter-sublist">
      <li class="counter-subitem">The Boltzmann dynamics of bosonic cascades</li>
      <li class="counter-subitem">Quantum model of a bosonic cascade laser</li>
    </ol>
  </li>
  <li class="counter-item">Spatial dynamics of polariton lasing structures
    <ol class="counter-sublist">
      <li class="counter-subitem">Pattern formation</li>
      <li class="counter-subitem">Control of lasing modes in structured potentials</li>
      <li class="counter-subitem">Bistability and polariton condensate memories</li>
      <li class="counter-subitem">Polariton quantum random number generators</li>
    </ol>
  </li>
  <li class="counter-item">Polariton condensate transistors and optical circuits
    <ol class="counter-sublist">
      <li class="counter-subitem">Polariton transistors</li>
      <li class="counter-subitem">Polariton neurons</li>
    </ol>
  </li>
  <li class="counter-item">Conclusions</li>
  <li class="counter-item">Further reading</li>
</ol>
</div>
</div>


== A. Scattering rates of polariton relaxation ==
== A. Scattering rates of polariton relaxation ==
== B. Derivation of the Landau criterion of superfluidity and Landau formula ==
== B. Derivation of the Landau criterion of superfluidity and Landau formula ==
== C. Landau quantization and renormalisation of Rabi splitting ==
== C. Landau quantization and renormalisation of Rabi splitting ==
== Index === Authors =The monograph is written by [[Alexey Kavokin]], [[Jeremy J. Baumberg]], [[Guillaume Malpuech]] and [[Fabrice P. Laussy]].= Errors & Errata =If you find errors in the book, please kindly [mailto:fabrice.laussy@gmail.com,kavokinalexey@gmail.com?subject=Error%20in%20Microcavities%21 write to us]. You will be credited here.
== Index ==
 
= Authors =
 
The monograph is written by [[Alexey Kavokin]], [[Jeremy J. Baumberg]], [[Guillaume Malpuech]] and [[Fabrice P. Laussy]].
 
= Errors & Errata =
 
If you find errors in the book, please kindly [mailto:fabrice.laussy@gmail.com,kavokinalexey@gmail.com?subject=Error%20in%20Microcavities%21 write to us]. You will be credited here.

Latest revision as of 19:43, 14 February 2026

Versions

1st Edition

Published 20 December (2007). [ISBN: 978-0191527968]

Revised Edition

Published 19 May (2011). [ISBN: 978-0199602278]

2nd Edition

Published 29 April (2017). [ISBN: 978-0191085864]

3rd Edition

In preparation.

TOC

Of the last (2nd) edition:

Glossary

§1 Overview of Microcavities

  1. Properties of microcavities
    1. Q-factor and finesse
    2. Intracavity field enhancement and field distribution
    3. Tuneability and mode separation
    4. Angular mode pattern
    5. Low-threshold lasing
    6. Purcell factor and lifetimes
    7. Strong vs. weak coupling
  2. Microcavity realizations
  3. Planar microcavities
    1. Metal microcavities
    2. Dielectric Bragg mirrors
  4. Spherical mirror microcavities
  5. Pillar microcavities
  6. Whispering-gallery modes
    1. Two-dimensional whispering galleries
    2. Three-dimensional whispering-galleries
  7. Photonic-crystal cavities
    1. Random lasers
  8. Material systems
    1. GaN microcavities
    2. ZnO microcavities
    3. Organic microcavities
    4. Transition metal chalcogenides (TMCs)
    5. Plasmonic nanocavities
  9. Microcavity lasers
  10. Conclusion

§2 Classical description of light

  1. Free space
    1. Light-field dynamics in free space
  2. Propagation in crystals
    1. Plane waves in bulk crystals
    2. Absorption of light
    3. Kramers–Kronig relations
  3. Coherence
    1. Statistical properties of light
    2. Spatial and temporal coherence
    3. Wiener–Khinchin theorem
    4. Hanbury Brown–Twiss effect
  4. Polarisation-dependent optical effects
    1. Birefringence
    2. Magneto-optical effects
  5. Propagation of light in multilayer planar structures
  6. Photonic eigenmodes of planar systems
    1. Photonic bands of 1D periodic structures
  7. Planar microcavities
  8. Tamm plasmons and photonic Tamm states
  9. Stripes, pillars, and spheres: photonic wires and dots
    1. Cylinders and pillar cavities
    2. Spheres
  10. Further reading

§3 Quantum description of light

  1. Pictures of quantum mechanics
    1. Historical background
    2. Schrödinger picture
    3. Antisymmetry of the wavefunction
    4. Symmetry of the wavefunction
    5. Heisenberg picture
    6. Dirac (interaction) picture
  2. Other formulations
    1. Density matrix and Liouvillian
    2. Second quantization
    3. Quantization of the light field
  3. Quantum states
    1. Fock states
    2. Coherent states
    3. Glauber–Sudarshan representation
    4. Thermal states
    5. Mixture states
    6. Power spectrum
    7. g(2) and other Glauber correlators
    8. Polarisation
  4. Outlook on quantum mechanics for microcavities
  5. Further reading

§4 Semiclassical description of light–matter coupling

  1. Light–matter interaction
    1. Classical limit
    2. Einstein coefficients
  2. Optical transitions in semiconductors
  3. Excitons in semiconductors
    1. Frenkel and Wannier–Mott excitons
    2. Excitons in confined systems
    3. Quantum wells
    4. Quantum wires and dots
  4. Exciton–photon coupling
    1. Surface polaritons
    2. Exciton–photon coupling in quantum wells
    3. Exciton–photon coupling in quantum wires and dots
    4. Dispersion of polaritons in planar microcavities
    5. Motional narrowing of cavity polaritons
    6. Microcavities with quantum wires or dots

§5 Quantum description of light–matter coupling

  1. Historical background
  2. Rabi dynamics
  3. Bloch equations
  4. Full quantum picture
    1. Light–Matter interaction Hamiltonian
    2. Dressed bosons
    3. Josephson coupling
    4. Jaynes–Cummings model
    5. Dicke model
  5. Lindblad dissipation
  6. Quantum dynamics with decay and pumping
    1. Single-time dynamics of coupled Bose fields
    2. Two-time dynamics of coupled Bose fields
    3. The two-level system coupled to a Bose field
  7. Excitons in semiconductors
    1. Quantization of the exciton field
    2. Excitons as bosons
    3. Excitons in quantum dots
  8. Exciton–photon coupling
    1. Polariton splitting
    2. The polariton Hamiltonian

§6 Weak-coupling microcavities

  1. Purcell effect
    1. The physics of weak coupling
    2. Spontaneous emission
    3. Quantum Dots, 2D excitons and 2D electron–hole pairs
    4. Fermi’s golden rule
    5. Dynamics of the Purcell effect
    6. Experimental realizations
  2. Lasers
    1. The physics of lasers
    2. Semiconductors in laser physics
    3. Vertical-cavity surface-emitting lasers
    4. Resonant-cavity LEDs
    5. Quantum theory of the laser
  3. Nonlinear optical properties of weak-coupling microcavities
    1. Bistability
    2. Phase matching
  4. Conclusion

§7 Strong-coupling: resonant effects

  1. Optical properties: background
    1. Quantum well microcavities
    2. Variations on a theme
    3. Motional narrowing
    4. Ultra-strong coupling in THz cavities
    5. Polariton emission
  2. Near-resonant-pumped optical nonlinearities
    1. Pulsed stimulated scattering
    2. Quasimode theory of parametric amplification
    3. Microcavity parametric oscillators
  3. Resonant excitation case and parametric amplification
    1. Semiclassical description
    2. Stationary solution and threshold
    3. Theoretical approach: quantum model
    4. Three-level model
    5. Threshold
  4. Two-beam experiment
    1. One-beam experiment and spontaneous symmetry breaking
    2. Dressing of the dispersion induced by polariton condensates
    3. Bistable behaviour
  5. Propagation of polaritons
    1. Polariton wavepackets
    2. Self-accelerating and self-interfering wavepackets
    3. Superfluid propagation
    4. Elementary excitation of resonantly pumped polaritons
    5. Conventional and unconventional polariton superfluidity
    6. High-density effects: the polariton backjet

§8 Strong-coupling: polariton Bose condensation

  1. Introduction
  2. Basic ideas about Bose–Einstein condensation
    1. Einstein proposal
    2. Experimental realization
    3. Modern definition of Bose–Einstein condensation
  3. Specificities of excitons and polaritons
    1. Thermodynamic properties of cavity polaritons
    2. Interacting bosons and Bogoliubov model
    3. Polariton superfluidity
    4. Quasicondensation and local effects
  4. Kinetics of formation of polariton condensates: semiclassical picture
    1. Qualitative features
    2. The semiclassical Boltzmann equation
    3. Numerical solution of Boltzmann equations, practical aspects
    4. Effective scattering rates
    5. From thermodynamic to kinetic regime
  5. Kinetics of formation of polariton condensates: quantum picture in the Born–Markov approximation
    1. Density matrix dynamics of the ground-state
    2. Discussion
    3. Coherence dynamics
  6. Kinetics of formation of polariton condensates: quantum picture beyond the Born–Markov approximation
    1. Two-oscillator toy theory
    2. Coherence of polariton laser emission
    3. Numerical simulations
    4. Order parameter and phase diffusion coefficient
  7. Spatial dynamics of polariton condensates
    1. Gross–Pitaevskii equation
    2. Modified Gross–Pitaevskii equations
    3. Bogolon dispersion
    4. Spatial coherence. The thermal fluctuation effect
  8. Experiments on Bose–Einstein condensation, superfluidity and lasing of polaritons
    1. Experimental observation
    2. Polariton lasing vs Bose–Einstein condensation
    3. Polariton diodes
    4. Experiments on superfluidity
  9. Polariton billiard
  10. Superconductivity mediated by exciton-polaritons
  11. Further reading

§9 Spin and polarization

  1. Introduction
  2. Spin relaxation of electrons, holes and excitons in semiconductors
  3. Microcavities in the presence of a magnetic field
  4. Resonant Faraday rotation
  5. Spin relaxation of exciton-polaritons in microcavities: experiment
  6. Spin relaxation of exciton-polaritons in microcavities: theory
  7. Optical spin Hall effect
  8. Full Poincaré beams and polarisation shaping in microcavities
  9. Optically induced Faraday rotation
  10. Interplay between spin and energy relaxation of exciton-polaritons
  11. Polarisation of Bose condensates and polariton superfluids
  12. Magnetic-field effect and superfluidity
  13. Finite-temperature case
  14. Stationary states of spinor condensates
  15. Conclusions
  16. Further reading

§10 Quantum fluids of light

  1. Introduction
  2. Topological excitations in quantum fluids of light
    1. Topological defects in scalar condensates
    2. Interaction with a static defect; superfluidity and topology
  3. Half-integer topological defects in spinor quantum fluids
    1. Introduction
    2. Half-vortices
    3. Half-solitons
  4. Hydrodynamic generation of oblique half-solitons and half-vortices
  5. Spin Bifurcation Theory (Broken Parity)
    1. Paramagnetic solutions
    2. Ferromagnetic solutions
  6. Engineering of the polariton band structure
    1. Introduction
    2. Wire Cavities
    3. Single Pillars and molecules
    4. Lattices: A few basics about 1D lattices
    5. Bright- and gap-solitons in 1D polariton systems
    6. Honeycomb lattice (scalar approximation)
    7. Honeycomb lattice (polarized)
    8. Polariton topological insulators
  7. Further reading

§11 Quantum polaritonics

  1. Microcavity QED
    1. Quantum vs classical polaritons
    2. Control of polariton Rabi oscillations
    3. Polariton squeezing
    4. Polariton statistics
    5. Polariton entanglement
  2. Polariton blockade
    1. Jaynes–Cummings blockade
    2. Kerr blockade
    3. Unconventional blockade
  3. Frequency-resolved photon correlations
    1. Photo-detection theory
    2. The sensor method
    3. Two-photon spectra
  4. N–photon emitters
    1. Super-Rabi oscillations
    2. Robust Jaynes–Cummings resonances
    3. Bundles of photons
    4. Yudson representation
  5. Exciting with Quantum Light
    1. Cascaded formalism
    2. Exciting simple targets
    3. Mollow spectroscopy
  6. Quantum Information Processing
    1. Quantum Computation
    2. Limits of Quantum Computation
    3. Quantum Annealing
    4. Polariton simulator
    5. Other paradigms
  7. Future prospects and reading

§12 Polariton devices

  1. Polariton lasers
    1. Concept of polariton lasing
    2. Realization of polariton lasers in semiconductor microcavities
  2. Polariton lasers with electrical injection
    1. Experimental manifestations
    2. Weak lasing
  3. Polariton terahertz lasers
    1. Variety of proposals
    2. Polariton terahertz lasers with two-photon excitation
    3. Superradiant emission of terahertz radiation by dipolaritons
  4. Bosonic cascade lasers
    1. The Boltzmann dynamics of bosonic cascades
    2. Quantum model of a bosonic cascade laser
  5. Spatial dynamics of polariton lasing structures
    1. Pattern formation
    2. Control of lasing modes in structured potentials
    3. Bistability and polariton condensate memories
    4. Polariton quantum random number generators
  6. Polariton condensate transistors and optical circuits
    1. Polariton transistors
    2. Polariton neurons
  7. Conclusions
  8. Further reading


A. Scattering rates of polariton relaxation

B. Derivation of the Landau criterion of superfluidity and Landau formula

C. Landau quantization and renormalisation of Rabi splitting

Index

Authors

The monograph is written by Alexey Kavokin, Jeremy J. Baumberg, Guillaume Malpuech and Fabrice P. Laussy.

Errors & Errata

If you find errors in the book, please kindly write to us. You will be credited here.