¿Hey, whatcha doin on this page?
It's just where I put stuff that I'm experimenting on for possible f¯uture use.
Contents |
05:13
That's what happen when you quote non existing literature[1] (this one[2] exists).
arial font algerian font bookman font braggadocio font courier font desdemona font garamond font modern font symbol font (These are pretty silly.) wingdings font (As are these.)
<anyweb width="780">http://www.wikipedia.org</anyweb>
$ \newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)} $
We consider, for various values of $s$, the $n$-dimensional integral \begin{align} \tag{1} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align} % which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral (1) expresses the $s$-th moment of the distance to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align} \tag{2} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. \end{align} Appropriately defined, (2) also holds for negative odd integers. The reason for (2) was long a mystery, but it will be explained at the end of the paper.
\[ \begin{aligned} \label{def:1} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \]
\begin{aligned} \tag{3} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
<google1 style="2"></google1>
Do you know this formula of mine <m>\frac{2\pi^2}{q}\int_0^\infty f(r)J_1(qr)rdr</m>?
21, May (2010) 17, August (2010)
<plot> set pm3d at s solid set palette rgb -6,-15,-7 unset colorbox set ticslevel 0 unset ztics unset surface set samples 70 set isosamples 70,70 complex(x,y)=x*{1,0}+y*{0,1} mandel(x,y,z,n) = (abs(z)>2.0 || n>=1000)? log(n): mandel(x,y,z*z+complex(x,y),n+1) a=-0.38 b=-0.612 set multiplot set origin 0,0 set size 0.55,0.77 splot [-0.5:0.5][-0.5:0.5] mandel(a,b,complex(x,y),0) set origin 0.35,-0.15 set size 0.7,0.96 set view 0,0,,, splot [-0.5:0.5][-0.5:0.5] mandel(a,b,complex(x,y),0) </plot>
<music>
\relative c' { e16-.->a(b gis)a-.->c(d b)c-.->e(f dis)e-.->a(b a) gis(b e)e,(gis b)b,(e gis)gis,(b e)e,(gis? b e) }
</music>
<music> \new Pianostaff << \new Staff { \time 2/2 \clef violin \key cis \minor \relative c \context Staff << \new Voice { \voiceOne
r4 cis8 dis e4 fis gis8 fis gis a gis fis e gis fis e fis gis fis e dis fis e dis e fis e d cis e d cis d e d cis b d cis b cis d cis b a cis b a b cis b a gis b a2 r cis2.
} \new Voice { \voiceTwo
e,8 gis a b cis dis bis cis dis4 r r2 r1 r1 r4 fis, b b b a8 gis a2 gis1~ gis8 gis fis eis fis2 gis2.
} \new Voice { \voiceThree \stemDown
s1 s s s s2. fis4 eis2 fis
} >> } \new Staff { \clef bass \time 2/2 \key cis \minor \relative c' \context Staff << \new Voice { \voiceOne
s1 r4 gis cis cis cis bis8 ais bis2 cis1 b2. s4 s1 b2 cis~ cis~ cis8 cis b a gis2.
} \new Voice { \voiceTwo
\stemUp cis,1 bis2 e dis1 \stemDown cis4 e a a a gis8 fis gis2~ \stemUp gis fis gis1 a2 fis~ fis8 fis e dis e4
} \new Voice { \voiceThree
\stemDown cis4 b a2 gis4 r4 g2\rest e1\rest e1\rest e1\rest r4 cis' fis fis fis eis8 dis eis2 fis r r
} >> } >> </music>