In page 8, last paragraph the equation $$L_\mathrm{I}+L_\mathrm{II}\approx2\langle a^{\dagger2}a^2\rangle$$ should read $$L_\mathrm{I}+L_\mathrm{II}\approx2\int_0^{\infty}dt\,\langle a^{\dagger2}a^2\rangle(t)$$ as the dynamics are always time integrated.
An $i$ is missing in Eq. (10c), so these coefficient should read:
$$L_{\pm}+iK_\pm=\frac{\frac{8\Omega_\mathrm{L}^2}{\gamma_\sigma(\gamma_\sigma+\gamma_\phi)}\big[1 \pm i \frac{5\gamma_\sigma-\gamma_\phi}{4 R_\mathrm{L}}\big]-\frac{\gamma_\sigma-\gamma_\phi}{\gamma_\sigma+\gamma_\phi}\big[1\pm i\frac{\gamma_\sigma-\gamma_\phi}{4R_\mathrm{L}}\big]}{4\big(1+\frac{8 \Omega_\mathrm{L}^2}{\gamma_\sigma(\gamma_\sigma+\gamma_\phi)}\big)}$$
A minus sign is missing in Eq. (3), it should read:
$$\Delta \omega_O=2g\Re\Big\{\sqrt{\sqrt{\Big(1+\frac{P_b}{P_a}\Big)^2-4\frac{\Gamma_+}{g}\Big(-\frac{\Gamma_b}{2g}+\frac{P_b}{P_a}\frac{\Gamma_-}{g}\Big)}-\frac{P_b}{P_a}-\Big(\frac{\Gamma_b}{2g}\Big)^2}\Big\}$$