Every page brings me hundreds of opportunities to make mistakes and to miss important ideas.
Donald Knuth, The Art of Computer Programming, Fascicle 1.
Proceedings of SPIE 8255, 825505 (2012)
Only the Hamiltonian term coupling the cavity to the H-polarised quantum dot state should appear in Eq. (1). That is, Eq. (1) should read:
$$H_\mathrm{dot-cav} = \omega_\mathrm{X}\big(|\mathrm{V}\rangle\langle\mathrm{V}|+|\mathrm{H}\rangle\langle\mathrm{H}|\big)+(2\omega_\mathrm{X}-\chi)\mathrm{B}\rangle\langle\mathrm{B}| +\omega_a a^\dagger a + g\big[a^\dagger (|\mathrm{G}\rangle \langle\mathrm{H}|+|\mathrm{H}\rangle \langle\mathrm{B}|)+ \text{h. c.}\big]$$
New J. Phys. 13, 113014 (2011)
In page 8, last paragraph the equation $$L_\mathrm{I}+L_\mathrm{II}\approx2\langle a^{\dagger2}a^2\rangle$$ should read $$L_\mathrm{I}+L_\mathrm{II}\approx2\int_0^{\infty}\,\langle a^{\dagger2}a^2\rangle(t)dt$$ as the dynamics are always time integrated.
Phys. Rev. A 84, 043816 (2011)
An $i$ is missing in Eq. (10c), so these coefficient should read:
$$L_{\pm}+iK_\pm=\frac{\frac{8\Omega_\mathrm{L}^2}{\gamma_\sigma(\gamma_\sigma+\gamma_\phi)}\big[1 \pm i \frac{5\gamma_\sigma-\gamma_\phi}{4 R_\mathrm{L}}\big]-\frac{\gamma_\sigma-\gamma_\phi}{\gamma_\sigma+\gamma_\phi}\big[1\pm i\frac{\gamma_\sigma-\gamma_\phi}{4R_\mathrm{L}}\big]}{4\big(1+\frac{8 \Omega_\mathrm{L}^2}{\gamma_\sigma(\gamma_\sigma+\gamma_\phi)}\big)}$$
Superlattices and Microstructures 47, 16 (2010)
A minus sign is missing in Eq. (3), it should read:
$$\Delta \omega_O=2g\Re\Big\{\sqrt{\sqrt{\Big(1+\frac{P_b}{P_a}\Big)^2-4\frac{\Gamma_+}{g}\Big(-\frac{\Gamma_b}{2g}+\frac{P_b}{P_a}\frac{\Gamma_-}{g}\Big)}-\frac{P_b}{P_a}-\Big(\frac{\Gamma_b}{2g}\Big)^2}\Big\}$$
Eq. (2.62) should read:
$$\omega_{\substack{\mathrm{U}\\\mathrm{L}}}^n=\frac{(2n-1)\omega_a+\omega_\sigma}2\pm\mathcal{R}_n$$
Eqs. (2.46) should read:
$$\sigma(\sigma^\dagger)^\mu\sigma^\nu =(-1)^\mu(1-\nu)(\sigma^\dagger)^\mu\sigma^{\nu+1}+\mu (\sigma^\dagger)^{\mu-1}\sigma^\nu $$
$$(\sigma^\dagger)^\mu\sigma^\nu\sigma^\dagger=(-1)^\nu(1-\mu)(\sigma^\dagger)^{\mu+1}\sigma^\nu+\nu (\sigma^\dagger)^\mu\sigma^{\nu-1}$$
Eq. (3.67) is missing a minus sign, as in the published paper above, so that it should read:
$$\Delta \omega_O=2g\Re\Big\{\sqrt{\sqrt{\Big(1+\frac{P_b}{P_a}\Big)^2-4\frac{\Gamma_+}{g}\Big(-\frac{\Gamma_b}{2g}+\frac{P_b}{P_a}\frac{\Gamma_-}{g}\Big)}-\frac{P_b}{P_a}-\Big(\frac{\Gamma_b}{2g}\Big)^2}\Big\}$$
Shortly after this equation, in the next paragraph, the in-line equation of the direct exciton emission splitting should read:
$$2\sqrt{\sqrt{g^4-2g^2\gamma_a\gamma_+}-\gamma_a^2/4}$$