m (→Known errors in our work) |
m (→(2012) Generation of a two-photon state from a quantum dot in a microcavity under incoherent and coherent continuous excitation) |
||
Line 9: | Line 9: | ||
Only the Hamiltonian term coupling the cavity to the H-polarised quantum dot state should appear in Eq. (1). That is, Eq. (1) should read: | Only the Hamiltonian term coupling the cavity to the H-polarised quantum dot state should appear in Eq. (1). That is, Eq. (1) should read: | ||
− | $$H_\mathrm{dot-cav} = \underbrace{\omega_\mathrm{X}\big(|\mathrm{V}\rangle\langle\mathrm{V}|+|\mathrm{H}\rangle\langle\mathrm{H}|\big) +(2\omega_\mathrm{X}-\chi) |\mathrm{B}\rangle\langle\mathrm{B}|}_\text{$H_\mathrm{dot}$}+\underbrace{\omega_a\ | + | $$H_\mathrm{dot-cav} = \underbrace{\omega_\mathrm{X}\big(|\mathrm{V}\rangle\langle\mathrm{V}|+|\mathrm{H}\rangle\langle\mathrm{H}|\big) +(2\omega_\mathrm{X}-\chi) |\mathrm{B}\rangle\langle\mathrm{B}|}_\text{$H_\mathrm{dot}$}+\underbrace{\omega_a a^\dagger a}_\text{$H_\mathrm{cavity}$}+ \underbrace{g\big[a^\dagger (|\mathrm{G}\rangle \langle\mathrm{H}|+|\mathrm{H}\rangle \langle\mathrm{B}|)+ \text{h. c.}\big]}_\text{$H_\mathrm{coupling}$}$$ |
=== (2011) Generation of a two-photon state from a quantum dot in a microcavity === | === (2011) Generation of a two-photon state from a quantum dot in a microcavity === |
Proceedings of SPIE 8255, 825505 (2012)
Only the Hamiltonian term coupling the cavity to the H-polarised quantum dot state should appear in Eq. (1). That is, Eq. (1) should read:
$$H_\mathrm{dot-cav} = \underbrace{\omega_\mathrm{X}\big(|\mathrm{V}\rangle\langle\mathrm{V}|+|\mathrm{H}\rangle\langle\mathrm{H}|\big) +(2\omega_\mathrm{X}-\chi) |\mathrm{B}\rangle\langle\mathrm{B}|}_\text{$H_\mathrm{dot}$}+\underbrace{\omega_a a^\dagger a}_\text{$H_\mathrm{cavity}$}+ \underbrace{g\big[a^\dagger (|\mathrm{G}\rangle \langle\mathrm{H}|+|\mathrm{H}\rangle \langle\mathrm{B}|)+ \text{h. c.}\big]}_\text{$H_\mathrm{coupling}$}$$
New J. Phys. 13, 113014 (2011)
In page 8, last paragraph the equation $$L_\mathrm{I}+L_\mathrm{II}\approx2\langle a^{\dagger2}a^2\rangle$$ should read $$L_\mathrm{I}+L_\mathrm{II}\approx2\int_0^{\infty}\,\langle a^{\dagger2}a^2\rangle(t)dt$$ as the dynamics are always time integrated.
Phys. Rev. A 84, 043816 (2011)
An $i$ is missing in Eq. (10c), so these coefficient should read:
$$L_{\pm}+iK_\pm=\frac{\frac{8\Omega_\mathrm{L}^2}{\gamma_\sigma(\gamma_\sigma+\gamma_\phi)}\big[1 \pm i \frac{5\gamma_\sigma-\gamma_\phi}{4 R_\mathrm{L}}\big]-\frac{\gamma_\sigma-\gamma_\phi}{\gamma_\sigma+\gamma_\phi}\big[1\pm i\frac{\gamma_\sigma-\gamma_\phi}{4R_\mathrm{L}}\big]}{4\big(1+\frac{8 \Omega_\mathrm{L}^2}{\gamma_\sigma(\gamma_\sigma+\gamma_\phi)}\big)}$$
Superlattices and Microstructures 47, 16 (2010)
A minus sign is missing in Eq. (3), it should read:
$$\Delta \omega_O=2g\Re\Big\{\sqrt{\sqrt{\Big(1+\frac{P_b}{P_a}\Big)^2-4\frac{\Gamma_+}{g}\Big(-\frac{\Gamma_b}{2g}+\frac{P_b}{P_a}\frac{\Gamma_-}{g}\Big)}-\frac{P_b}{P_a}-\Big(\frac{\Gamma_b}{2g}\Big)^2}\Big\}$$
Eq. (2.62) should read:
$$\omega_{\substack{\mathrm{U}\\\mathrm{L}}}^n=\frac{(2n-1)\omega_a+\omega_\sigma}2\pm\mathcal{R}_n$$
Eqs. (2.46) should read:
$$\sigma(\sigma^\dagger)^\mu\sigma^\nu =(-1)^\mu(1-\nu)(\sigma^\dagger)^\mu\sigma^{\nu+1}+\mu (\sigma^\dagger)^{\mu-1}\sigma^\nu $$
$$(\sigma^\dagger)^\mu\sigma^\nu\sigma^\dagger=(-1)^\nu(1-\mu)(\sigma^\dagger)^{\mu+1}\sigma^\nu+\nu (\sigma^\dagger)^\mu\sigma^{\nu-1}$$
Eq. (3.67) is missing a minus sign, as in the published paper above, so that it should read:
$$\Delta \omega_O=2g\Re\Big\{\sqrt{\sqrt{\Big(1+\frac{P_b}{P_a}\Big)^2-4\frac{\Gamma_+}{g}\Big(-\frac{\Gamma_b}{2g}+\frac{P_b}{P_a}\frac{\Gamma_-}{g}\Big)}-\frac{P_b}{P_a}-\Big(\frac{\Gamma_b}{2g}\Big)^2}\Big\}$$
Shortly after this equation, in the next paragraph, the in-line equation of the direct exciton emission splitting should read:
$$2\sqrt{\sqrt{g^4-2g^2\gamma_a\gamma_+}-\gamma_a^2/4}$$