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We study a toy model of two oscillators reaching equilibrium through coupling to a thermal bath to gain
insights into the mechanism responsible for coherence buildup in an assembly of conserved bosons. We
show how, in some conditions, coherence can appear spontaneously out of thermal states, i.e., without prior
existence in the system. We then study the dynamics when particles have a finite lifetime and the overall
mean number is maintained by pumping.

1 Introduction

In this paper we discuss how coherence arises in an assembly of bosons accumulating in a single state,
when their energy dissipation is through scattering to lower energy states, as opposed to such bosons like
photons or phonons where particles can be simply created or annihilated. To that effect we recourse to a toy
model which reduces to the bare minimum many conceivable systems of greater complexity, but especially
one of interest to the authors and to the audience of this conference: microcavity polaritons [1]. In such
systems a so-called polariton laser effect is expected [2] where polaritons—bosons at low densities—
gather in the system’s ground state and upon radiative recombination emit coherent light, owing to their
common quantum nature. As such it has much in common with the Bose Einstein Condensation (BEC)
of atoms, and thus resembles more to an atom laser [3] than to a conventional laser. However it has also
specificities of its own, namely polaritons have a short lifetime and their dispersion relation leads to a
bottleneck of relaxation towards ground state for exchange of small momenta. Therefore, although based
on macroscopic occupancy of a single state, the dynamics is crucial in this problem and makes it disputable
that BEC is involved in microcavities. For the first thing, polaritons are two dimensional bosons and BEC
does not appear in this dimensionality without a confining potential. For the second, because of the finite
lifetime, an hypothetic condensate can be sustained only if the device is operated out of equilibrium. The
polariton laser therefore sits between an atom laser and a conventional (photon) laser, the former operating
at equilibrium based on BEC, the latter operating far from thermal equilibrium, based on a flux equilibrium.

Since dimensionality is not an issue because not the accomodation of a population in phase-space but
dynamical effects are responsible for populating the ground state, we shall describe the system by a zero-
dimensional two-oscillators model, one oscillator figuring the ground state, the other an excited state. In
next section we discuss the notion of coherence in a BEC as well as various theoretical efforts devoted to
its understanding; in section three we introduce a rate equation which displays the mechanism responsible
for apparition of coherence; in section four we apply it to exhibit possibility of coherence buildup out of
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thermal states (without coherence previously existing in the system); in section five we study the dynamics
of this buildup when particles have a finite lifetime, thus providing a simple model for a polariton laser.

2 Other works and definition of coherence

There have been various theoretical works related to growth of a condensate. Put aside Einstein’s insight [5]
based on statistical arguments, most authors favored a semi-classical Boltzmann equation [4], which how-
ever resulted in a majority of negative results at the exception of some works held in finite size system,
dispensing from or postponing the thermodynamic limit. The semi-classical Boltzmann equation (SCBE)
is unable to initiate the condensate and can only squeeze the distribution to temperature vanishingly higher
than critical. However if the condensate is already present, it properly describes the redistribution of parti-
cles between it and its “vapor”. A way out of this difficulty is the introduction of a “seed” which bypasses
whatever actual mechanism is required. Therefore the growth has been divided in three stages, two kinetic
stages where SCBE holds, separated by a coherent stage where it is invalid and where some other mecha-
nism is responsible for nucleating the condensate. The coherent stage has been studied by Kagan et al. [7]
who further split it into many substages, essentially one which first decays the amplitude fluctuations of
the order parameter (which is in this case 〈ψ(r)〉 with ψ the wavefunction, see [8] for details). Then an-
other stage decays phase fluctuations of the order parameter. Gardiner et al. covered at depth the issue of
quantum kinetics in presence of a condensate, or in a regime where one should arise, in a series of seven
papers entitled QKI to QKVII [9] where a hierarchy of quantum kinetic equations are derived, applied and
simulated for the case of cold atoms. The simplest equation able to grow condensation without seed is,
in their terminology, a Quantum Boltzmann Master Equation (QBME), i.e., an equation which structure
essentially follows that of the usual SCBE but which is an equation for the probability distribution of the
state’s configurations rather than for its populations (which are mean values only). Namely, in a Fock
basis |n0, n1, . . . 〉 which describe a system with ni particles in state i (in some basis), the QBME is an
equation of motion for p(n0, n1, . . . ) the probability of the system to be found in this state. One recovers
SCBE from QBME by neglecting fluctuations and correlations between states, i.e., if one assume such
identities as 〈ninj〉 = 〈ni〉〈nj〉. Recently, we studied with Y. G. Rubo [10] a master equation for the
ground state alone, so that although it permits the exploration of quantum features of this state, like its
phase survival, it is unable to grow coherence out of vacuum and as in the Boltzmann description, a seed
has been used (see however [11] in this volume where this theory is extended to dispense from the seed).
We shall use a QBME for the simplest scattering processes in a two-oscillators system in next section.

As for coherence itself, since we are dealing with a single mode, we expect, independently of the
quantum state, strong first order coherent features, i.e., the emission will be in a narrow spectrum and in the
ideal limit of noninteracting, infinite lifetime particles, the spectrum is actually a delta function δ(h̄ω−E 1).
If one takes into account self-interaction, collision induced dephasing or finite lifetime, the spectrum is
consequently homogeneously broadened [12]. We do not take much concern in this aspect which in this
special case is largely independent of actual coherent quality of the state. For a single state, one refers
more profitably to the higher coherence degree of the state, related to counting statistics of the state. If the
bosonic annihilation operator for state i is a i, the zero-delay second order coherence is defined [13] by

g
(2)
i (0) =

〈a†
ia

†
iaiai〉

〈a†
iai〉2

=

∑
n1,n2

ni(ni − 1)P (n1, n2)[∑
n1,n2

niP (n1, n2)
]2 (1)

where the average of middle expression is quantum average, and in the case i = 1, 2 of a two-oscillators
system—that we study in this paper—for rightmost expression. This depends heavily on the quantum
state. It ranges from 1 for a coherent state—with distribution p coh(n) = e−α2

αn/
√

n! (α2 the intensity)—
to 2 for a thermal state—with geometric distribution p th(n) = (1 − eτ )eτn (with τ ∝ −1/T , T the
temperature). Physically, it accounts for the correlations of detection events. In the case of a coherent
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state, particles are independent and the probability to detect one does not affect subsequent probabilities
of detection. The thermal state exhibits bunching in that sense that a detection increases probability of
another detection. Another limiting case of interest is the Fock state, where g (2)(0) < 1, corresponding to
antibunching: detecting a particle in a well defined number state lowers probability of another detection. In
term of moments, (1) reads (〈n2〉−〈n〉)/〈n〉2, so that if g(2)(0) = 1 the variance of particle number equals
the particle number, which is characteristics of a gaussian. If g (2)(0) = 2 the variance is higher by the
square of the particle number. The relative mean squared deviation lowers with increasing particle numbers
for gaussian-like statistics whereas it increases for thermal states. Physically this means a coherent state
can be understood as a single state with stable nonzero intensity of emission (i.e., with low fluctuations
about this given intensity), whereas a thermal state is essentially not emitting apart from occasional, greatly
fluctuating, emission.

The exact distributions pcoh and pth are limiting case fulfilled under realistic conditions where there
is an infinity of oscillators, rather than just two. The main characteristics that we shall adopt to qualify a
state as thermal or coherent in our special case will be much less stringent but still much more accurate
than a mere “close to” criterion: we define a state as thermal or essentially thermal if its probability of
occupancy is higher for the vacuum and decreasing with occupation number, i.e., p th(n + 1) < pth(n),
whereas a state is qualified as coherent if its higher probability of emission is not centred about 0, i.e., if
the distribution exhibits a peak at some nonzero, preferably high, value. In this way a Fock state would
appear coherent when it is manifestly not. Such special cases however will not be met in the growth
process and the distribution will remain between genuine thermal and coherent states. The intent of such
conventions is merely to simplify the quest of criterion for coherence growth in our special case and not
to loosen already existing definitions of general validity. States which arise in practise in the vicinity of
critical conditions are flattened geometric distribution or stretched gaussians, reflecting a mixed state with
some coherence and some thermal contamination. For such a state g (2)(0) will sit between 1 and 2. To
summarise, we understand coherence as emission with number fluctuation locking. All this work therefore
concentrates on pi(n) the probability distribution, or statistics, of state i, and especially of ground state,
without considerations for the phase or any symmetry breaking which requires off-diagonal elements of
the density matrix. In this way we concentrate on Kagan’s first stage of decay of fluctuations in amplitude.
Moreover, experimentalists currently measure nothing out of scope of p(n) alone and to this date, the
best experimental evidence for polariton condensation has been through the observation of decrease of
g(2)(0) [14].

3 QBME for the two-oscillators model

Detailed investigations of the coherence buildup in bosonic systems have been actively pursued but the
complexity of the proposed theories often hinder analytical understanding and heavy computations are re-
quired. Especially, Gardiner et al. applied to cold atoms technics from quantum optics, like stochastic or
quantum state diffusion methods [9], which are intrinsically numerical. To gain physical insights into the
mechanism at work in the growth of coherence, which dispense from first principle simulations, we study
at depth the simplest case conceivable which captures all the essential physics, namely a two-oscillators
bosonic system, where inter-particles interactions are neglected and with relaxation mechanisms that con-
serve particle numbers. The first approximation holds in the low density region which is satisfied when the
condensate is forming out of the vacuum [10]. The second is an intrinsic property of polaritons which are
conserved particles (in the sense that a particle—like an atom—is conserved, as opposed to a gauge boson,
like a photon or phonon). This results in correlations of occupancy numbers of the different states, since if
a polariton enters a state, another state has lost this polariton. Also the number of polaritons in the entire
system fluctuates, but we shall see that the correlations implied by conservation of polaritons in their relax-
ation is at the heart of our mechanism. One can reconcile the conservation of particles with a fluctuation in
their total number with an interpretation as a pulsed experiment, where a laser injects periodically in time
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a fluctuating number of particles in the system. Each relaxation by its own is for an exact and constant
number of particles, while observed results are averaged over pulses and thus echo an overall fluctuating
population.

States will be labelled 1 and 2. There is only one parameter to distinguish them which is the ratio ξ of
the rate of transitions w1→2 and w2→1 between states:

ξ ≡ w2→1

w1→2
(2)

Those are constants and we shall assume ξ > 1 which identifies state 1 as the ground state (i.e., state of
lower energy), since from elementary statistics:

w2→1

w1→2
= e(E2−E1)/kT (3)

with Ei the energy of state i (by definition of ground state E2 > E1) and T is the temperature of the system
once it has reached equilibrium.

For such a two-oscillators system, assuming the simplest scattering channel of diffusion by emission or
absorption of a phonon, the QBME reads:

ṗ(n, m) = (n + 1)m[w1→2p(n + 1, m − 1) − w2→1p(n, m)]

+ n(m + 1)[w2→1p(n − 1, m + 1) − w1→2p(n, m)]
(4)

where p(n, m) is the joint probability distribution to have n particles in state 1 and m in 2. This equation
has a very clear physical significance and one hardly needs to refer to a more general QBME, rigorously
derived from a microscopic hamiltonian. For instance the first term of rhs expresses that one can increase
the probability to have (n, m) particles in states (1, 2) through the process where starting from (n +
1, m − 1) configuration, one reaches (n, m) by transfer of one particle from state 1 to the other state.
This is proportional to n + 1, the number of particles in state 1 and is stimulated by m − 1 the number of
particles in state 2 to which we add one for spontaneous emission, whence the factor (n + 1)m. We repeat
that w1→2 and w2→1 are constants and should not be confused with the bosonic transition rate defined
as w1→2(1 +m) and w2→1(1+ n) to account in a transparent way for stimulation. Our present discussion
will be clarified by expliciting it.

We will soon undertake to solve exactly this equation but to delineate its quality in explaining how
coherence arises in the system we first show that if we make the approximation to neglect correlations
between the two states, i.e., if we assume the factorisation

p(n, m) = p1(n)p2(m) (5)

then the system at equilibrium will never display any coherence, i.e., in accord with our previous discus-
sion, both states will be in a thermal state no matter the initial conditions, the transition rates or any other
parameters describing the system. Indeed put (5) into (4) and sum over m to obtain:

ṗ1(n) = p1(n + 1)w1→2(n + 1)(〈m〉 + 1)

− p1(n)
(
w2→1(n + 1)〈m〉 + w1→2n(〈m〉 + 1)

)
+ p1(n − 1)w2→1n〈m〉

(6)

with 〈m〉 ≡ ∑
m mp2(m) the average number of bosons in state 2. At equilibrium the detailed balance of

these two states gives the solution

p1(n + 1) =
〈m〉

〈m〉 + 1
w2→1

w1→2
p1(n) (7)
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The same procedure for state 2 yields likewise

p2(m + 1) =
〈n〉

〈n〉 + 1
w1→2

w2→1
p2(m) (8)

With the notational shortcuts

θ ≡ 〈n〉
〈n〉 + 1

, ν ≡ 〈m〉
〈m〉 + 1

(9)

equations (7) and (8) read after normalisation p1(n) = (1 − νξ)(νξ)n and p2(m) = (1 − θ/ξ)(θ/ξ)m, so
that 〈n〉 ≡ ∑

np1(n) = νξ/(1 − νξ) which inserted back into (9) yields

ξ =
θ

ν
(10)

or, written back in terms of occupancy numbers and transition rates:

w2→1

w1→2
=

〈n〉
〈n〉 + 1

〈m〉 + 1
〈m〉 (11)

which give in eq. (7), (8):

p1(n + 1) =
〈n〉

〈n〉 + 1
p1(n) and p2(m + 1) =

〈m〉
〈m〉 + 1

p2(m) (12)

achieving the proof that both states are (exact) thermal states under the hypothesis (5) that we will now
relax. This will give rise to a likewise regime where both states are thermal states, but also to another
regime where the excited state (state 2) is still in a thermal state, but the ground state (state 1) is non-
thermal (and in some limit, has the statistics of a coherent state). This is possible if one takes into account
correlations between states. In our case these correlations come from the conservation of particle number,
so that the knowledge of particle number in one state determines the number in other state. In fact observe
how the QBME connects elements of p(n, m) which lie on antidiagonals of the plane (n, m). One such
antidiagonal obeys equation

n + m = N (13)

where N is a constant, namely, the distance of the antidiagonal to the origin from the geometrical point of
view, and the number of particles from the physical point of view. One such antidiagonal is sketched on
fig. 1. The equation can be readily solved if only one antidiagonal is concerned, i.e., if there are exactly N
particles in the system. In case where the particle number in the system is only known probabilistically,
one can still decouple the equation onto its antidiagonal projections, solve for them individually and add up
afterwards weighting each antidiagonal with the probability to have the corresponding particle number. We
hence focus on such one antidiagonal N which conditional probability distribution is given by d(n|N) ≡
p(n, N − n), with equation of motion given by (4) as:

ḋ(n|N) = (n + 1)(N − n)[w1→2d(n + 1|N) − w2→1d(n|N)]

+n(N − n + 1)[w2→1d(n − 1|N) − w1→2d(n|N)]
(14)

The equation is well behaved on regard of its domain of definition 0 ≤ n ≤ N since it secures that d(n|N) =
0 for n > N . This also ensures unicity of solution despite the recurrence solution being of order 2, for
d(1|N) is determined uniquely by d(0|N), itself determined by normalisation.
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Fig. 1 p(n, m) steady state solution in case where the distribution function for the number of particles in the entire
system P (N) is a gaussian of mean (and variance) 15 and ξ = 1.2. One “antidiagonal”, n + m = 7, is shown for
illustration. The projection on n-axis displays a coherent state whereas the projection on m-axis displays a thermal
state.

The stationary solution is obtained in this way (or from detailed balance):

d(n + 1|N) =
w2→1

w1→2
d(n|N), (15)

with solution

d(n|N) = d(0|N)
(

w2→1

w1→2

)n

(16)

where d(0|N) is defined for normalisation as

d(0|N) =
ξ − 1

ξN+1 − 1
, ξ ≡ w2→1

w1→2
(17)

Technically the solving procedure resembles much that already encountered to solve the equation under
assumption (5), only we are now paying full account for correlations of two states, which turned detailed
balancing (7) and (8) into one of an altogether different type (16). This gives by weighting (16) the solution
to the QBME:

p(n, m) =
ξ − 1

ξn+m+1 − 1
ξnP (n + m) (18)

with P (N) ≡ ∑
n+m=N p(n, m) the distribution of total particle number, i.e., probability to have N parti-

cles in the entire system. P (N) is time independent since the microscopic mechanism involved conserves
particle number for any transition (one can also check that Ṗ (N) = 0). This allows to derive the statistics
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m

p(n,m)

antidiagonal
n+m=7



of separate states:

p1(n) = ξn
∞∑

N=n

ξ − 1
ξN+1 − 1

P (N)

p2(n) = ξ−n
∞∑

N=n

ξ − 1
ξN+1 − 1

ξNP (N)

(19)

Observe how the n dependence of the sum index prevents trivial relationship between p 1 and p2 of the
kind p1(n) = p2(N − n). Also the asymmetry between ground and excited state is patent from (18). It is
this feature which allows to have two states with drastic different characteristics, typically a thermal and
a coherent state. Indeed, p1 (resp. p2) is the product of a sum with an exponentially diverging (resp. con-
verging to zero) function of ξ. In both cases, the sum of positive terms is a decreasing function of n, so
that clearly no coherence can ever survive in excited state which fate is always thermal equilibrium, or at
least, in accord with our definitions,

p2(n) > p2(n + n0) for all n, n0 in N (20)

For p1 however, ξn diverges with n which leaves open the possibility of a peak not centred about zero in
this distribution, while it can still be a decreasing function if the sum converges faster still. It is to P (N)
to settle this issue, which as a constant of motion is completely determined by the initial condition. The
solution for the case where P (N) is a gaussian of mean (and average) 15 is displayed on fig. 1. p(n, m)
is in this case manifestly not of the type p1(n)p2(m) and there is always coherence in the system. In next
section we investigate the more interesting situation where coherence is not existing a-priori in the system.

4 Growth at equilibrium

By growth at equilibrium we mean that, still in the approximation of infinite lifetime, coherence can arise
when one lowers temperature, i.e., increases ξ, in a system where initially all states are thermal states. In
this case the initial condition for the system is the thermal equilibrium

p(n, m) = (1 − θ)(1 − ν)θnνm (21)

where θ, ν are the thermal parameters for ground and excited states respectively. They link to 〈n〉, the mean
number of particles in ground state, through 〈n〉 = θ/(1 − θ), or, the other way around, θ = 〈n〉/(1+〈n〉).
Similar relations hold for ν. This is one possible steady solution of (4) and we discuss how it arises
from (18) below. For the time being we stress again that a thermal state is essentially empty, as attests its
higher probability which is for zero particle. Once in a while, thermal kicks transfer in the state one or
many particles, which however do not stay for long before the state is emptied again or replaced by other,
unrelated particles. This accounts for the chaotic, or incoherent, properties of such a state. This essentially
empty but greatly fluctuating statistics brings no conceptual problem for little populations, but one might
enquire whether it is conceivable to have a thermal distribution with high mean number. This is possible
for a single state but not for the system at once. A macroscopic population can distribute itself in a vast
collection of states so that each has thermal statistics, constantly exchanging particles with other states and
displaying great fluctuations, but as expected from physical grounds, the whole system does not fluctuate
greatly in its number of particles. Therefore we expect P (N), the distribution of particles in the entire
system, to be peaked about a nonzero value, typically to be a gaussian of mean and variance equal to N .
Reminding our previous definitions, this however does not qualify the system as a coherent emitter, since
the statistics must refer to a single state, not to a vast assembly of differing emitters. Thus, not surpris-
ingly, coherence arises when a single quantum mode models or copy features of a macroscopic system,
typically its population distribution. The two-oscillators system which is a rather coarse approximation to
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Fig. 2 Ground state distribution
p1(n) for ξ = θ/ν ≈ 1.26, with 3
particles in excited state and 17 in
ground state, both in thermal equi-
librium. g(2)(0) = 2.

Fig. 3 Same with ξ raised to 1.5.
Distribution is non-thermal, espe-
cially p1(1) > p1(0), though
the distribution is then decreasing.
g(2)(0) ≈ 1.89.

Fig. 4 Same with ξ increased
to 105. Distribution is distinc-
tively non-thermal, yet far from
coherent in the two-oscillators
model. g(2)(0) ≈ 1.74.

a macroscopic system will however display very clearly this mechanism. In the limit where ξ � 1 it is
already visible from (19) that p1(n) ≈ P (n), so that the statistics of the entire system indeed serves as a
blueprint for the ground state (and it alone, excited states being always decreasing as already shown). At
equilibrium, with two thermal states, the distribution for the whole system reads:

P (N) =
∑

n+m=N

p(n, m) = (1 − θ)(1 − ν)
θN+1 − νN+1

θ − ν
(22)

This exhibits a peak at a nonzero value provided that

ν + θ > 1 (23)

This criterion refers to a first necessary condition: there must be enough particles in the system. The less
particles available so that (23) is fulfilled, is two. This minimum required to grow coherence fits nicely with
the Bose-Einstein condensation picture (one needs at least two bosons to condense). It is not a necessary
condition, though; also the dynamical aspect is important as shown by the key role of ξ. Indeed if the
system is steady in configuration (21), ξ is not a free parameter but is related to θ and ν by:

ξ =
θ

ν
(24)

and in this case the distribution of ground state

p1(n) = (1 − θ)(1 − ν)ξn
∞∑

N=n

θN+1 − νN+1

ξN+1 − 1
ξ − 1
θ − ν

(25)

reduces by straightforward algebra to

p1(n) = (1 − θ)θn (26)

i.e., as should be for consistency, the ground state is in a thermal state, independently of the value of θ (i.e.,
no matter the number of particles in ground state). This can come as a surprise, but it must be born in mind
that this two-oscillators model is an extreme simplification which cannot dispense from some pathological
features, namely, the faculty to sustain a thermal macroscopic population, an ability that we understand
easily since the ground state accounts for half of the system! It is expected that with increasing number of
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states, dimensionality will forbid such an artifact. Also the shape of P (N) hardly resembles a gaussian (see
fig. (4)) but already in this limiting case it is able to display a peak at a nonzero value provided there are
enough particles. With increasing number of states, the central limit theorem will turn this distribution into
an actual gaussian. Once again, P (N) is time independent because the relaxation mechanism conserves
particle number, which results in correlations between the two states. By increasing ξ to ξ ′, one might
search new values of θ, ν, say θ ′, ν′, so that θ/(1−θ)+ν/(1−ν) = θ′/(1−θ′)+ν′/(1−ν′) (conservation
of particle number) and ξ ′ = θ′/ν′. This is possible if one allows P (N) to change, in which case the two
new states are also thermal states. If P (N) is constrained by correlations induced by strict conservation
of particle numbers, so that the uncertainty is not shifted as the system evolves, then (24) breaks down
and this allows (18) to grow a coherent state in ground state. This process is illustrated on figures 2–4,
starting frow thermal equilibrium and lowering temperatures (increasing ξ). In the two-oscillators model,
coherence grown out of thermal states cannot come much closer to a gaussian than illustrated on fig. 4.

5 Growth out of equilibrium

The previous case holds in an equilibrium picture and for that matter refers to coherence buildup in systems
like cold atoms BEC. To address the polariton laser case, it is necessary to extend the two-oscillators model
with the additional complications of finite lifetime τ of particles in state 1, with a balance in the total
population provided by a pump which inject particles in state 2 at a rate Γ. (We will not crucially need
finite lifetime in excited state and thus neglect it, which is good approximation in a typical microcavity
where the radiative lifetime drops by a factor of ten to an hundred in the photon-like part of the dispersion.)
Although the QBME can be readily extended phenomenologically to take these into account,

ṗ(n, m) = (n + 1)m[w1→2p(n + 1, m − 1) − w2→1p(n, m)]

+ n(m + 1)[w2→1p(n − 1, m + 1) − w1→2p(n, m)]

+
1
τ

(n + 1)p(n + 1, m) − 1
τ
np(n, m)

+ Γp(n, m − 1) − Γp(n, m)

(27)

the couplings between different particle numbers forbid to solve this new equation along the same analyt-
ical lines as previously. However in this out-of-equilibrium regime, the excited state is not as important
as in the equilibrium case where it must be thermal and which configuration is of utmost consequence on
the ground state. Thus we can dispense from the actual distribution of excited state and content with the
mean 〈m〉n obtained from

∑
m mp(n, m) = 〈m〉np1(n). In this case (27) can be decoupled to give an

equation for p1(n) alone, and in the “dynamical” steady state, the detailed balance reads:

p1(n + 1) =
w2→1〈m〉n

w1→2(〈m〉n+1 + 1) + 1/τ
p1(n) (28)

Up to this point it is still exact, only we do not take further interest in the excited state’s statistics. Also
in this out-of-equilibrium case we grant the conservation of particle number as the origin of correlations
between the two states, but because of lifetime and pumping, it can now be secured only in the mean,
leading us to the following approximation for 〈m〉n:

〈m〉n = N − n (29)

The pump, which has quantitatively disappeared from the formula, is implicitly taken into account through
this assumption, since even though particles have a finite lifetime, their number is constant on average.

When the population has stabilised in the ground state by equilibrium of radiative lifetime and pumping,
it is found in a coherent state if N > Nc with Nc the critical population defined by:

Nc =
1

τ(w2→1 − w1→2)
(30)
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and obtained from (28) and (29) with the requirement that p 1(1) > p1(0). If this population is exceeded,
coherence builds up in the system along with the population, which stabilises at an average given by the
maximum of the gaussian-like distribution:

〈n〉 = nmax = N − Nc (31)

obtained from p1(n) = p1(n + 1); so that effectively if N < Nc there is no such gaussian and coherence
remains low with a thermal-like state which maximum is for zero occupancy. If N > N c the state is a
gaussian which mean increases with increasing departure of population from the critical population. Thus,
the more the particles, the less the particle number fluctuations of the state, the best its coherence.

On fig. 5 is displayed the numerical solution of eq. (27) for p 1(n, t), where parameters (see legend) have
been chosen so that N exceeds (30) and therefore grow some coherence from an initially empty ground
state (cf. fig. 5-a). The coherence is maintained for infinite times and the statistics for the ground state
occupancy tends towards a gaussian-like function neatly peaked about a high value (cf. fig. 5-b). We define
a coherence degree equal to 2 − g (2)(0), so chosen to be 0 for a genuine thermal state and 1 for a genuine
coherent state. In the case where (30) is exceeded, the coherence degree of ground state quickly reaches
unity (fig. 5-c).

On fig. 6 is displayed the counterpart situation where parameters (see legend) result in a sub-critical
population so that the steady state is thermal, as shown on fig. 6-b. The dynamics of p(n), starting from
vacuum, is merely to grow this thermal state (cf. fig. 6-a) and the coherence degree remains low (cf. fig. 6-
c).

In the limit of infinite lifetime, one recovers the result of the previous section in the case where P (N)
is a Kronecker delta. The dynamics of coherence buildup in a realistic microcavity is complete when one
extends (28) such that instead of a single excited state one accounts for all excited states of the system with
suitable correlations with ground state (with possibility to neglect correlations between excited states as a
simplification), and by using parameters (lifetime and transition rates) of a realistic cavity as computed by
SCBE. Such results are the topic of a future publication.

6 Conclusions

We derived from the application of a Quantum Boltzmann Master Equation (QBME) to a simple two-
oscillators model—that we solved analytically, eq. (18)—some insights into the physics at work in the
process of coherence buildup in an assembly of conserved bosons. We identify in this case correlations
between states as the responsible mechanism, in sharp contrast with lasers where nonlinearities provided by
a resonator are locking the fluctuations. In the case studied, correlations are caused by strict particle number
conservation: the number of particle in one state determines the number in the other state. We showed that
enough bosons (at least two) and efficient rate of transitions between states is needed. Coherence then arises
when the distribution function for the number of particles in ground state behaves like the distribution for
the entire system. Even in the two-oscillators model, it is thus possible to grow some coherence out of
thermal states. The coherence is more efficient the higher the correlations. Finally, we addressed the
kinetics of coherence buildup when particle have finite lifetime. Depending on whether the system has or
has not time to populate the ground state (cf. eq. (30)), this one grows some coherence or remains thermal
with low population.
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Fig. 5 System configuration suitable for coherence
buildup: N = 350, w2→1 = 10−5 (arb. units),
w1→2 = 0.75×10−5 (arb. units) and 1/τ = 20×10−5

(arb. units). All units have the same dimension of an
inverse time. (a) is a density plot for the time evolu-
tion of p(n), starting from vacuum it quickly evolves
towards a coherent state. (b) is the projection of p(n)
in the steady state. (c) is the time evolution of the co-
herence degree 2 − g(2)(0): full coherence is quickly
attained.

Fig. 6 System configuration unable to develop co-
herence. Parameters are the same as for fig. 5 ex-
cept w2→1 = .95 × 10−5 (arb. units) corresponding
to a higher temperature. (a) Starting from vacuum the
ground state steadies in a thermal state for which a pro-
jection (b) is shown. (c) The coherence degree remains
low.
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