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Strongly coupled quantum fields, such as multicomponent atomic condensates, optical fields, and polaritons,
are remarkable systems where the simple dynamics of coupled oscillators can meet the intricate phenomenology
of quantum fluids. When the coupling between the components is coherent, not only the particles’ number, but
also their phase texture that maps the linear and angular momentum, can be exchanged. Here, on a system of
exciton polaritons, we have realized a so-called full-Bloch beam: a configuration in which all superpositions
of the upper and the lower polaritons—all quantum states of the associated Hilbert space—are simultaneously
present at different points of the physical space, evolving in time according to Rabi-oscillatory dynamics. As a
result, the light emitted by the cavity displays a peculiar dynamics of spiraling vortices endowed with oscillating
linear and angular momenta and exhibiting ultrafast motion of their cores with striking accelerations to arbitrary
speeds. This remarkable vortex motion is shown to result from distortions of the trajectories by a homeomorphic
mapping between the Rabi rotation of the full wave function on the Bloch sphere and Apollonian circles in the
real space where the observation is made. Such full-Bloch beams offer prospects at a fundamental level regarding
their topological properties or in the interpretation of quantum mechanics, and the Rabi-rotating vortices they
yield should lead to interesting applications such as ultrafast optical tweezers.
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I. INTRODUCTION

Some of the most counterintuitive concepts of physics
arise from the representation that quantum mechanics brings
to the usual notions of reality: one cannot refer to physical
objects with definite properties and attributes, but only to
measurements made on them. Despite the introduction of a
wave function by the theory, descriptions most often remain
in terms of localized objects: particles. Even when interactions
between them are not weak perturbations, this interpretation in
terms of objects is typically extremely robust and accurate, as
one can preserve it by introducing new quasiparticles, such as
electrons in the Fermi liquid of a metal, or bogolons in inter-
acting Bose gases, or the so-called polaritons, that arise when
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interactions between particles become too strong, as com-
pared to the free energy, to be considered as a perturbation.
Such conceptualizations are not reduced to the fundamental
cases of interacting modes, but can also be applied to a wide
family of topological defects. Solitons, for instance, that are
nonlinear wave phenomena bearing all the characteristics of
physical objects, can be better and accurately described as
such. Quantized vortices are another stunning example. They
are the fundamental modes of rotation for fields mapped by
a complex wave function (in particular, atomic Bose-Einstein
condensates [1], superfluids [2], superconductors [3], electron
beams [4,5], and light [6–8]). Since the wave function must
reconnect with itself, its phase ϕ has to undergo an integer
number of twists when looping around the center of rotation.
This number, the topological charge, defines the (intrinsic)
orbital angular momentum (iOAM) per particle, quantized in
units of 2π . While vortices stem from a delocalized rotation
in the entire space, in the hydrodynamic (long-wavelength)
limit, they are neatly pictured as objects. This manifests most
strikingly through the so-called vortex core, a null-density
pointlike phase singularity in which the wave vector k di-
verges (since k = ∇ϕ). Within optical fields, the connection
between the Maxwell description and quantum dynamics is
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revealed by the so-called singular beams [9,10]. Such vortex
beams are most attractive due to their classical-to-quantum
connections [11], with easy experimental generation by the
Laguerre-Gaussian laser modes that allow to combine iOAM
within a beam with spin angular momentum (SAM) related to
photon polarization. Propagating light carrying angular mo-
mentum can be used for information processing [12,13], for
instance in offering a new degree of freedom for multiplexing
[14,15]. Recently, curved light beams [16] and standing or
moving solenoidal beams [17] have been proposed as the
most advanced tools for optical tweezers [18,19]. The rich
vortex-related phenomenology illustrates the importance of
the recent advances with optical vortices, giving rise to the
field of “complex light” or “structured light” [20].

Among quantum fluids able to sustain vortices, microcav-
ity exciton polaritons [21,22] have brought forward unique
assets to study these objects [23–29], including their mul-
ticomponent nature with coherent coupling and their Rabi
oscillations [30,31]. In the strong coupling regime of the two
bare components, the cavity photon and the exciton fields, new
normal modes of the system appear. The two eigenmodes are
known as the upper (UP) and lower polariton (LP) modes,
whose dispersions are separated in energy by the Rabi split-
ting. The polariton Rabi oscillations are known since the first
polariton studies, but their subpicosecond imaging and control
have only recently been achieved [32,33]. While the vorticity
transfer and dynamics in coherently coupled atomic BECs
has been considered theoretically [34,35], here, based on the
recent progress in both the quality of samples and the level
of control and detection, we experimentally study the joint
polariton Rabi-oscillatory and spatiotemporal vortex dynam-
ics. It yields a spectacular phenomenology illustrating how
notions of “physical objects” must be treated with care and
linked to the underlying full-wave-function picture. Namely,
in the light emitted by the system, we observe a vortex, being
at all times accurately defined and visible, undergoing striking
ultrafast rotations with large accelerations and decelerations.
This is achieved with a fine control over the shape of the fields
formed in the microcavity and based on the coherent transfer
of particles and their momentum between the exciton and
photon modes, by preparing a wave function that realizes si-
multaneously all the possible quantum states of the polaritonic
Hilbert space. Since this is, in our case, the simplest possible
case of a two-dimensional Hilbert space, a Bloch sphere, we
refer to this wave function as a full-Bloch beam [36]. The
consequent photoluminescence (PL), i.e., the measurement
made solely on one of the Bloch vector projections (pho-
tons), reveals light structured in both space and time that can
carry simultaneously all the three different kinds of angular
momentum of an optical beam [37]: the created states are
circularly polarized, which corresponds to SAM, they carry
the topological charge of a vortex (iOAM) initially imprinted
by the excitation, and possess an extrinsic orbital angular
momentum (eOAM) brought forward from the displacement
of the vortex core from the origin. Finally, since also the center
of mass of such states as well as the vortex core inside and
the net transverse linear momentum (nTLM) are rotating in
time, this endows them with time-varying OAM [38]. We
identify the appropriate mathematical description for such a
richly structured object, namely, we provide a conformal and

bijective link between the real plane and the Bloch sphere that
shows how the complex dynamics in real space of both the
wave function and even more so of the vortex core, reduces
to a trivial Rabi rotation on the Bloch sphere. Within the
scope of this study, both the physical system and its theoreti-
cal description remain at the most fundamental level without
complex effects of many-body interactions or nonlinearities.
In particular, we demonstrate how linear dissipation further
adds interesting twists to an already puzzling dynamics, where
the complex evolution can be represented in terms of a general
Möbius transform. We anticipate that increasing interactions
in the OAM-carrying polariton systems [39] or combining
various Bloch sphere rotations by delocalization in reciprocal
space would result in the distortion of the full-Bloch beam
metric, which is subject to further investigation.

The paper is organized as follows. In Sec. II, we describe
the experiments where a particular combination of the
topology of excitation with the Rabi-oscillatory dynamics
gives rise to the peculiar state and its dynamics mentioned
above, and provide its reproduction by the theoretical model.
We discuss the underlying concept that makes this complex
phenomenology a beautiful example of a quantum mechanical
projective measurement performed on the full wave function.
In Sec. III, we show how, while the full wave function is
rigidly rotating with uniform speed on the Bloch sphere, its
projection onto an “observable” state leads to amazing behav-
iors, including ultrafast motion up to superluminal speeds and
the periodically changing angular momentum without applied
forces. In the Conclusions, Sec. IV, we discuss the concrete
consequences and impact of our findings on polaritonics in
particular and on the research fields that deal with dressed
states of light-matter interactions and richly structured fields,
in general.

II. FULL-BLOCH BEAM CONCEPT

A. Initialization and spiraling vortex dynamics

The initialization of the dynamics is performed by spatially
overlapping two pulses generated externally to the sample,
with and without optical vortices, delayed in time, with a fine
control on the sought shape of the wave packet formed in
the microcavity. Namely, we overlap a femtosecond Laguerre-
Gauss LG00 laser pulse onto an LG01 pulse created by means
of a patterned liquid-crystal retarder (a q-plate) [29,40]. The
first excitation pulse (pulse A) directly generates the polariton
field, setting an initial condition to be a vortex state upon
resonant photon-to-polariton conversion on the sample. The
control pulse (pulse B), which is vortex free, is obtained from
the unconverted part out of the q-plate. The spatial structures
of pulses A and B are shown in Fig. 1(a). Such density plots
are the photonic emission maps from the polariton field after
an independent excitation by one of the two pulses. For sim-
plicity, the pulses A and B are copolarized (and chosen to be
circular). In a further extension of this work, one could also
realize a full Bloch-Poincaré beam by using different polar-
izations. The relative power between the two pulses PA/PB is
set close to 2, in order to have a comparable top density for
the associated polariton populations at the time of the control
pulse arrival. The temporal delay tAB between the two pulses
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FIG. 1. Rabi-rotating vortex experiment. (a) Photonic emission from the polariton field excited by independent resonant pulses: the vortex
A and the plain Gaussian B. (b) Displacement of the vortex core position by coherent overlap of the beams. The solid and dashed parts of the
green line (radial cut of pulse A) are in antiphase, leading to new positions for both the maximum and null density (i.e., vortex core) of the
total beam at a radial distance set by constructive and destructive interferences. (c) Time-space charts of the polariton amplitude along a central
crosscut when superimposing the excitation and control pulses (time delay tAB ≈ 1 ps) leading to desynchronization of the Rabi oscillations
along the diameter as shown by their bending after the arrival of pulse B. (d) Time evolution of the polariton amplitude and phase at times
t = 1.20, 1.50, 1.58, and 1.72 ps. The vortex core, identified by the phase singularity, is marked by a yellow dot in the amplitude maps with
the red curve showing its trajectory in a time span of two Rabi periods (t = 1.2–2.8 ps). The white streamlines in the phase maps show the
in-plane momentum vector field kC = ∇ϕ. See also the Supplemental Material, movie SM1 [42].

is controlled by the difference in the two arms’ lengths (ex-
citation delay line), defining the optical phase shift between
the pulses ϕAB (modulo 2π ). Finally, the PL from the cavity
is monitored by the use of the digital holography technique
[32], based on the time-resolved (detection delay line) homo-
dyne interference that allows us to track in time with ultrafast
precision the complex-valued photon field dynamics, i.e., both
its phase and intensity.

In the absence of the Rabi coupling, the result would be
immediate [41]: pulse B, the plain-Gaussian LG00 with a
central top intensity and homogeneous phase, coherently sums
up to the previous vortex field LG01, which is empty in its
center. The central phase singularity is thus instantaneously
displaced to a new position by the destructive interference

between the initial and the newly generated field, as sketched
in Fig. 1(b). In two dimensions (2D), the specific direction
of the displacement is set by the optical phase delay, i.e., the
new azimuthal position of the vortex core is set by the phase
shift ϕAB between the two pulses, which is one example of
a feature which we are able to control coherently with high
accuracy. Similarly, a new density maximum is obtained in
the radially opposite direction to the core. In presence of
the Rabi coupling, however, since the normal modes of the
system differ from the bare cavity mode, additionally to the
displacement of the vortex, the obtained composite polari-
ton field is set into a very peculiar motion, with a rotation
of the vortex core itself, as shown in Figs. 1(c) and 1(d)
(cf. Supplemental Material, movie SM1 [42], for a better
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FIG. 2. Coherent shaping of trajectories. (a) Experimental xyt photonic vortex lines (time range t = 0.5–10 ps, step δt = 0.02 ps). The
two realizations are for opposite lA = +1 (blue) and lA = −1 (red) initial topological charges, resulting in opposite spiraling directions.
(b) Experimental xyt vortex lines (time range t = 0.5–6.0 ps) for two optical phase shifts ϕAB between the excitation pulse A (LG01) and
the control pulse B (LG00). (c) Detail of the dynamics over a single Rabi period (t = 2.0–2.8 ps) with the xyt surface topology bottle envelope
drawn by the different vortex lines when sweeping ϕAB. Its radius breathes with the Rabi oscillations. It is mapped by spheres at 100-fs time
intervals, spanning ϕAB in a 15π range by successive ∼ π/4 steps. The blue tube shows a xyt vortex line for a given ϕAB. (d) Amplitude and
phase of the polariton field at a fixed time of the dynamics (t = 2.6 ps), for different realizations corresponding to optical phase shifts separated
by π/2. The vortex core, shown with a yellow dot in the amplitude maps, and the black and white circle of isotime positions from the previous
panel. (e) Helicoidal vortex string in the virtual xyϕAB space at a fixed time.

illustration of the effect). Figure 1(c) displays the chart of the
photonic amplitude along a central crosscut, sampled with a
δt = 20 fs time step. This chart makes evident the peculiar
feature achieved by the use of a double excitation pulse with
different topologies: the density imbalance along the crosscut,
the filling of the empty core of the initial vortex by the second
pulse, and, importantly, the desynchronization of the Rabi
oscillations between the radially opposed regions. More strik-
ingly, Fig. 1(d) shows the photonic amplitude and phase maps
of the field at various times following the initial condition set,
first, by the circular symmetric LG01 pulse A carrying a vortex
(at t = 1.20 ps) which is suddenly displaced aside upon the
arrival of the second pulse B (t = 1.50 ps). This triggers a
complex dynamics of the vortex core inside the polariton spot,
grazing its boundary (t = 1.58 ps) at ultrafast speed before
coming back again near the spot center with a huge decel-
eration (t = 1.72 ps) to start another cycle. The solid line in
the amplitude maps shows the vortex core trajectory in the
time span of two Rabi periods (t = 1.2–2.8 ps). The radial
damping is due to the faster UP dephasing time τU ∼ 2 ps
[32]. It can be roughly described as a spiraling orbit, where
the full loop is traveled in a time of TR = 0.78 ps, but with a
varying speed along the trajectory (here TR = 2π/�R denotes
the Rabi oscillations period). Note that the location of the
vortex core is easily and unambiguously tracked in the phase
mapping. A similar effect, with a smaller orbit, is obtained for
the photon density center of mass.

B. Fine control of the vortex lines

The trajectory of the observed vortex core is reported as xyt
vortex lines in Fig. 2(a), in the 0.5–10 ps time range, where
the two vortex lines correspond to two different realizations,
upon starting with opposite iOAM (i.e., opposite initial vor-
tices imprinted by the pulse A, either lA = +1 or lA = −1).
When starting with opposite windings, also opposite spiraling
directions (eOAM) are obtained. Additionally, the fine delay
control allows us to rotate the whole xyt core trajectory around
the t axis, by changing the optical phase shift ϕAB between
the two pulses. As an example, the two specific realizations
corresponding to slightly different values ϕ′

AB and ϕ′′
AB are

shown in Fig. 2(b), in the 0.5–6.0 ps time range. The entire set
of core trajectories describes a closed xyt topological surface,
upon scanning the phase shift ϕAB along one complete 2π

turn, as shown in Fig. 2(c). The surface has been mapped in
a limited time range (a single Rabi period, 2.0–2.8 ps) upon
registering the phase singularity position (solid spheres) at
regular time intervals of 0.1 ps, and by changing ϕAB by suc-
cessive ∼π/4 steps. Here, the detail of a specific vortex string
(blue tube sampled every 20 fs) demonstrates how the line
is perfectly carved on the topological surface. It is observed
that every xy encircling path that encompasses the topological
surface produces a unitary phase winding, for every time into
the dynamics and every value of ϕAB. The closed surface is
fundamentally symmetric around the initial vortex position,
and its radius breathes with the Rabi period. The circular
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symmetry of the surface is a direct consequence of the sym-
metry of both the initial vortex pulse A and the Gaussian pulse
B, and of their coaxial alignment. The circular symmetry is
further evident in the panels of Fig. 2(d), which report the
amplitude and phase of the polariton field at a fixed time of
the dynamics (t = 2.6 ps) but for different phase delays (ϕAB

spaced by π/2 intervals, which in other terms is λ/4 length
delay differences). The vortex core is at this time displaced
from the center by always the same distance, but at a changing
azimuthal direction that directly maps the optical phase shift,
and describes an almost perfect circle [see black and white
line in the density maps Fig. 2(d)]. The vortex line at a fixed
time can also be represented in the xyϕAB space, where it
assumes the helicoidal shape, as represented in Fig. 2(e).

C. Vortex trajectory modelization

The observed core dynamics that arises from the interplay
of coherent coupling and vorticity can be reproduced with
the standard coupled Schrödinger equations (cSEs) that ac-
commodate these two ingredients. The cSEs are written for
the coupled exciton ψX(x, y, t ) and photon ψC(x, y, t ) macro-
scopic wave functions (see Appendix); hence, while only the
photonic field ψC is easily accessible in the experiments, the
theory allows us to study as well the excitonic component
ψX, and the LP (UP) fields ψL,U = (ψC ± ψX)/

√
2 (in the

simplest case of zero detuning), or any other combination of
those.

Assuming at first the particle-conserving model with no de-
cay terms, we show in Fig. 3(a) the position of the vortex cores
in both ψC (red helic), corresponding to the one measured
experimentally, and ψX (blue helic) as functions of time, along
with the vortex cores in LP/UP (in green/purple lines), all of
which are easily computed as the null-density points (phase
singularities) of the respective wave functions. The excitation
pulse A creates a preset condition with the vortex perfectly
centered into the beam, and coincident in all four fields. Upon
arrival of the control pulse B, the ψU and ψL vortices split into
fixed positions out of the center of the beam, being separated
by the distance dLU, as shown in Figs. 3(a)–3(c). As described
above, the direction of the instantaneous displacement of the
vortex core is defined by the time delay between the pulses
tAB. Here, since the normal modes of the system have different
well-defined eigenenergies h̄ωU,L, the respective optical phase
shifts ϕAB between the two pulses for the UP and LP fields
differ: ϕU,L

AB = 2π (tAB mod tU,L
opt )/tU,L

opt , where tU,L
opt = 2π/ωU,L.

Thus, the angular difference between the directions of dis-
placement of the UP and LP vortices ϕU

AB − ϕL
AB becomes

defined by the coarse time delay between the two pulses (of
the order of the Rabi period TR, in the ps scale) and hence
by the associated Rabi phase 
AB = 2π (tAB mod TR)/TR. The
UP-LP cores’ displacement directions are opposite and hence
dLU is maximal [as shown in Figs. 3(a)–3(c)] when the pulse
B is sent in the so-called anti-Rabi phase (i.e., tAB is a half-
integer multiple of TR); on the contrary, if tAB is an integer
multiple of TR (the two pulses are in Rabi phase), the ψU,L

vortices are displaced to the same point in space. The two
leftmost panels in Fig. 3(g) show the UP and LP cores dis-
placement for the experimental realization of Fig. 5, where
the UP and LP density profiles were reproduced from the

measured photon wave function using the time fitting by the
theoretical model of the experimental data at each position
(see Appendix for details of the experimental data fitting, and
for additional modelization cases of various time delays).

D. Homeomorphism between real space and the Bloch sphere

The displacement of the UP and LP vortices to different
positions results in the noncoinciding spatial profiles of
the two eigenstates ψU,L = |ψU,L|eiϕU,L [as schematically
represented in Fig. 3(f)] and, as a consequence, in an
instantaneous change of both the ratio |ψU|/|ψL| and phase
difference ϕLU = ϕU − ϕL at each point in space. Effectively,
it means that the polariton field at each position (x, y) is now
characterized by its own relative content and relative phase
between the upper and the lower polariton, changing from one
point to the other. As can be seen in the upper part of Fig. 3(a),
at the arrival of the second pulse, the vortex cores in the
coherently coupled bare fields ψC,X = (ψU ± ψL)/

√
2 start

to describe circular orbits powered by the Rabi oscillations.
At every instant, the exciton and photon cores are on the
π -opposite relative phase positions along the orbit, thus
acting similarly to a Newton’s cradle, with one core slowing
down while the other one accelerates. The varying speeds
of the cores are well visible in the vortex lines (see also the
Supplemental Material, movies SM1 and SM2 [42]): despite
being perfect circles when projected on the (x, y) plane, the
ψC,X vortices’ core orbits in Fig. 3(a) are not perfectly helical
in xyt space due to their nonuniform speed.

Interestingly, there is a privileged geometry to describe the
Rabi-rotating vortex phenomenon, and this is not the 2D plane
(in real or reciprocal, i.e., Fourier-transformed, space) where
a continuous mapping of multiple wave functions (ψC,X,L,U)
should be done at each time. Instead, the best way to describe
the system’s intricate dynamics is on the polariton Bloch
sphere [32]. Each quantum state (QS) of the system can be
expressed in the polariton basis on this sphere as follows:

|QS〉 = 1√
2

(√
1 − s |L〉 + √

1 + s eiϕLU |U〉), (1)

where |L〉 and |U〉, being the pure LP and UP states,
correspond to the south and north poles of the sphere,
respectively, and (s, ϕLU) are the coordinates that pin-
point any of the possible quantum states of the system,
with s = (|ψU|2 − |ψL|2)/(|ψU|2 + |ψL|2) representing the
local (position-dependent) UP-LP population imbalance and
ϕLU(x, y) their local relative phase. On the Bloch sphere, since
the value of s effectively defines the latitude of a quantum
state (being exactly the projection on the vertical LP-UP axis),
it can be seen as an analog to the Stokes parameter S3 on
the Poincaré sphere of polarizations. Normalized to the total
density of excitations N , Eq. (1) provides an absolute (space-
independent) definition of the full wave function. A choice
of space defines the parameters, for instance, in the physical
2D plane, the normalization becomes N = ∫∫

[|ψL(x, y)|2 +
|ψU(x, y)|2] dx dy. Thus, each QS is uniquely identified by a
point (in any space) corresponding to the coordinates (s, ϕLU)
with the density |ψtotal|2 = |ψL|2 + |ψU|2. The full wave func-
tion mapped onto the Bloch sphere is shown in the upper panel
of Fig. 4(a). When the bare energies of the photon and exciton
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FIG. 3. Theoretical trajectories and experimental reconstruction of the polariton profiles. (a), (b) Numerical xyt vortex lines (purple for
the UP mode, green for LP, red for photon, blue for exciton). Photonic density |ψC(x, y)|2 maps are superimposed at selected time frames.
Pulse A provides coinciding vortex cores in all of the fields. Upon arrival of pulse B, the four cores are displaced to different positions. (a) No
decay, and exciting close to the LP. (b) With UP decay rate γU = 0.2 ps−1 and exciting close to the UP. The photon and exciton cores first
circle around the UP line, while the global UP-LP relative content S changes, resulting in the orbit radius growth, and then switches to rotation
around the LP vortex core, finally shrinking as the UP population vanishes. The slow change of the instantaneous orbits in time due to the UP
dephasing is shown in the local polariton imbalance parameter s = (|ψU|2 − |ψL|2)/(|ψU|2 + |ψL|2) maps on the right, where the white line
is the isodensity s = 0 at each chosen moment of time (a circle with drifting center and radius). (c) Maps of the amplitudes and phases of the
normal modes (polaritons), showing their density asymmetry and the displacement of the UP and LP vortices. (d) Spatial distribution of the
local polariton imbalance s(x, y) in the case of higher LP content (i.e., S < 0), as in (a). The photon and exciton cores (red and blue dots) move
along the UP-LP isodensity line s = 0. (e) Spatial distribution of the relative phase ϕ0

LU for a vortex dipole. The photon core (red dots) follows
the direction of the gradient ∇ϕLU (shown by streamlines whose color shows the core velocities, larger at the boundary: vcore = �R/|∇ϕLU|).
(f) Side view of (c) showing the noncoinciding profiles in the LP and UP fields due to the vortices splitting by the distance dLU. The right axis
shows the changing local imbalance s across the cut, for the case of equal global UP/LP populations (S = 0). (g) Left to right: experimental
counterparts to the theoretical panels (c), (d), and (e), obtained by fitting the measured photon density at each point (x, y) and reconstructing the
polariton fields as explained in the Appendix. The rightmost panel additionally shows the two instantaneous isodensity lines s = 0 at the start
(2.0 ps) and end (2.8 ps) of the second Rabi period, as well as the positions of the core (red dots) during this loop over the ∇ϕLU streamlines.
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FIG. 4. Full-Bloch beam on the sphere and its projection in real space. (a) Total density |ψtotal|2 = |ψU|2 + |ψL|2 covering the full-Bloch
sphere for three different values of S = 0.9 (top), 0.6 (middle), and 0.0 (bottom). In this space, the dynamics of the full wave function is
a simple rotation (i�Rt) around the vertical axis. With the differential decay the density |ψtotal|2 drifts downward the L pole and the three
panels shown correspond then to three successive times separated by 1.25TR. (b) Stereographic projection of the full wave function from
the Bloch sphere to the real space |ψtotal (x, y)|2 corresponding to the observed intricate dynamics. The two families of mutually orthogonal
Apollonian circles (white and black) map the loci of equal polaritonic balance s and isophase ϕLU. Their intersection identifies a single point
on the Bloch sphere and thus a unique quantum state. See the Supplemental Material, movies SM3 [42] and SM4 [42], for better visualization.
(c) Corresponding photon wave functions ψC(x, y), obtained by the projection (2) of the full wave function. The white circles (in the bottom
panel, of infinite radius) correspond to s = 0 and thus to the trajectory of the photon vortex core in space, while its intersection with the
isophase ϕLU = π specifies the exact position of the core at any given time. The superimposed double spiral shows the photon vortex trajectory
with decay, starting from S = 0.9. For (a)–(c), γR/�R = 0.1. (d) Evolution of the UP-LP global imbalance S(t ) due to decay. The curve can
be started at any point, depending on the initial condition S(0) defined by the excitation and is given here as a function of a time delay �t
relative to S = 0. The same curve is also followed locally at each point of the real space by the parameter s(r, t ), starting from the value given
by its initial distribution s(ri, 0). The three symbols on the line correspond to the three times selected for the previous columns, as marked.
(e) Bloch-sphere trajectory s(ri, t ) (blue curve) of a QS in presence of decay, for a given point ri in real space, for γR/�R = 0.05. The vector
s defining the QS on the sphere combines the two spherical coordinates (s, ϕLU). (f) Trajectories r(si, t ) [blue and red dots for the decay rates
γR/�R = 0.1 (case of the previous columns) and 0.5, respectively] of a specific QS in real space, on top of the Bloch conformal metric which
gets projected as two families of circles: yellow circles for the isodensities (a total of 9 orbits, S from −0.8 to 0.8 with δS = 0.2, plus the UP
and LP cores at S = ±1) and black circles for the isophases (12 circles with δϕLU = π/6). With decay, the centers of the black circles drift and
their radii change with time (see also the Supplemental Material, movie SM4 [42]). The rhumb angle α with respect to the parallels (constant
s) is defined by tan α = γR/�R both on the sphere (e) and in real space (f). Note that the panels (b) are rotated by 90◦ compared to (f), for a
clearer correspondence with the Bloch spheres shown in (a).

states are equal (no detuning), the Rabi-oscillatory dynamics
corresponds to the rigid rotation of the Bloch sphere at a
uniform speed around the vertical axis [see the three rows of
Fig. 4(a)], so that in the absence of decay, the parameter s
stays fixed in time, and the temporal evolution of each QS
is governed by the azimuthal angle changing continuously
as ϕLU = ϕ0

LU(r) + �Rt , i.e., the sum of the geometrical and
dynamical phases, respectively. As discussed above, the spa-
tial component of the relative phase ϕ0

LU(r) is not uniform
in space, but has the shape of an UP-LP vortex dipole de-
fined by the UP and LP spatial profiles, which is shown in
Figs. 3(e) (model) and 3(g) (experiment). The spatiotemporal
evolution ϕLU(r, t ) is provided in the Supplemental Mate-

rial, movie SM3 [42]. Neglecting the spread in momentum
on the dispersion relation, which is a good approximation
for broad-enough wave packets over the Rabi timescale, all
states follow the same equator-parallel dynamics [i.e., the QS
trajectories are defined by the equation s(x, y) = const, see
Fig. 4(a) and the corresponding lines in the real space in
Fig. 4(b)]. This treatment allows to easily track the trajectories
of the photon and exciton vortices cores by looking for the
trajectories where s(x, y) = 0 since the points of zero density
in the respective fields ψC,X are bound to move along the lines
where |ψU|2 − |ψL|2 = 0, which corresponds to the equator
of the Bloch sphere [see Fig. 3(d) showing the distribution of
s in space, and the line marked as s = 0.0 in Fig. 4(c) that
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shows the photon wave function observed in the experiment].
Since at each point of space the system assumes a different
quantum state, it is no longer simply or even well described by
the pairs ψC,X or ψL,U alone, and one needs instead to turn to
the full wave function of the system which is defined both as a
function of the real plane (x, y) and the Bloch sphere (s, ϕLU)
coordinates.

The nature of the state which is actually created in the
experiment by superimposing two pulses and displacing the
vortices in the normal modes of the system is a full-Bloch
beam, in the sense that all quantum states of the Bloch
sphere (all values −1 � s � 1 and 0 � ϕLU < 2π ), except
for just one specific state at each moment of time (see be-
low), are simultaneously present somewhere in the physical
space. Since each point in space realizes a different QS, the
measurement of the “photon field” is made on the position-
dependent photonic fraction of the polariton field, hence, the
measured photon wave function is given by ψC(x, y, t ) =
|ψtotal(x, y)|〈x, y|�pr

C 〉, where the projection of the normalized
full wave function onto the photon state is given by∣∣�pr

C

〉 = |C〉〈C|QS〉 = 1
2 (

√
1 − s + √

1 + s eiϕLU )|C〉. (2)

A similar expression can be obtained for the “exciton field”
by projecting the normalized full wave function on the ex-
citon state: |X〉〈X|QS〉. From this perspective, the observed
vortex core corresponds to the QS of the polariton Bloch
sphere, which, when projected onto a photon state according
to Eq. (2), provides a null density, i.e., |�pr

C 〉 = 0, whereas
|ψtotal| stays nonzero (while the neighboring points create
a phase singularity). Clearly, the photon vortex core corre-
sponds to the |X〉 state on the sphere: by definition, this state
has no photon component and is therefore the only point
where |�pr

C 〉 vanishes. Any other QS has a nonzero photon
content. Similarly, the exciton vortex core corresponds to the
point where |QS〉 = |C〉. In fact, the topology of the full wave
function is such that any point in real space becomes a vortex
core in a certain basis of observables.

In the linear regime, the density of quantum states is pre-
served on the Rabi-rotating sphere, and this must be true
in space as well. As a consequence, any QS, for example,
the pure exciton state |X〉 (the ψC vortex core), which is to
be found at a given location at any given time, must drift
continuously to another location in space in the next instant
of time, with the same intensity. Consequently, the excitation
of all the quantum states differing at all points of space creates
a bicontinuous mapping, i.e., a homeomorphism between the
2D Bloch sphere of quantum states and the 2D real-space
physical plane (including infinity), as shown in Figs. 4(a) and
4(b). The metric consisting of parallels and meridians on the
sphere is conformally (i.e., angle preserving) mapped to the
metric made of two mutually orthogonal circle families, or
bipolar circular coordinates (Apollonian circles) in real space
[see in Fig. 4(b), where the constant s and ϕLU are marked by
the white and black lines, respectively]. This physical realiza-
tion of a mathematical homeomorphism between the extended
complex plane [here, (x, y) plane plus a point at infinity] and
the Riemann sphere (here, the polariton Bloch sphere) results
in a stereographic projection that maps circles on the sphere to
circular trajectories on the plane, except the projection point

associated with the QS that is at infinity in real space. Due to
the Rabi rotation, this QS is not a fixed point on the sphere.
The projection plane [the (x, y) plane shown in Figs. 4(b)
and 4(c)] is at all times tangent to the sphere on the opposite
side from the projection point. In all panels of Fig. 4(a), the
projection point on the Bloch sphere is the QS exactly in the
middle of the gray area. This is the state mapped to infinity,
and the Bloch vector tends to the same limiting value regard-
less of how the limit r → ∞ is taken on the plane. At the same
moment of time, the QS which is π opposite to it on the sphere
(on the same parallel) is projected onto the real space exactly
in the middle of the UP-LP vortex dipole in the relative phase
profile ϕLU(x, y; t ). This effect is best illustrated in the bottom
row in Figs. 4(a)–4(c): when the projection point on the Bloch
sphere coincides with the state |C〉, the π -opposite state (i.e.,
|X〉) corresponds to the photon vortex core which is seen in
Fig. 4(c) exactly in the middle between the stereoprojections
of the points |U〉 and |L〉. The position of the projection point
and hence the exact shape of the stereographic projection from
the Bloch sphere to the plane are defined by the global imbal-
ance of the UP and LP populations in the system, namely, S =∫

(|ψU|2 − |ψL|2)dr/N . The three rows in Figs. 4(a)–4(c),
corresponding to three different values of S, show snapshots
of the full wave function’s total density |ψtotal|2 on the Bloch
sphere as well as its stereographic projection |ψtotal(x, y)|2 in
real space and the corresponding profile of the photon wave
function |ψC(x, y)| obtained by the QS projection according
to Eq. (2), respectively. Only in the case of equal total popula-
tions S = 0 (bottom row), the parallels s = const are projected
symmetrically to the (x, y) plane [see the schematic repre-
sentation of this case in Fig. 3(f)]. The equator of the sphere
and hence the trajectory of the ψC,X vortex cores in this case
are projected to a straight line going to infinity exactly in the
middle of the UP-LP vortex dipole, symmetrically dividing
the trajectories corresponding to parallels from the upper and
the lower semispheres on the (x, y) plane [see the bottom
panels in Figs. 4(b) and 4(c)]. However, when the system is
excited closer to the UP energy (0 < S < 1), the projections
of all parallels (the isodensity lines) shift toward the opposite
semispace, forming circles around the ψU core (point “L” on
the real plane), as shown in the top two rows of Fig. 4(b),
and around the LP core (point “U”) when excited closer to
the LP energy (−1 < S < 0). Examples of cSEs dynamics
in different cases, depending on the excitation energy, are
presented in Figs. 3(a) and 3(b) [together with the maps of
s(x, y)], and in the Appendix.

Through the homeomorphic mapping, the evolution of
any QS can be described as transformations of the ex-
tended complex plane, belonging to the Möbius group [43]:
f (z) = (az + b)/(cz + d ). This can be reduced to the sim-
ple Rabi rotation by associating the complex number z with
the QS coordinates on the Bloch sphere as z = ψU/ψL =√

(1 + s)/(1 − s) exp(iϕLU), which yields a = exp(i�Rt ),
b = c = 0, and d = 1 [alternatively, this can be seen as a
rigid rotation of the total density on a motionless sphere, see
Fig. 4(a)]. The two fixed points of the Möbius transformation
in real space are then represented by the positions of the LP
and UP vortex cores, which correspond to the |U〉 and |L〉
states on the Bloch sphere, respectively [see the points marked
as U and L in the corresponding top panels of Figs. 4(a) and
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4(b)]. These are the only two points which cannot undergo any
change, i.e., being eigenstates, or normal modes, they preserve
themselves.

E. Differential decay and the drifting orbits

To describe the full dynamics including the evolution of
the global polariton imbalance parameter S, we include the
UP and LP mode decays γU,L, respectively, to the cSEs model
[32] (see Appendix). While there would be little to understand
in the modifications of the dynamics due to decay in the
real plane alone, the connection to the Bloch sphere through
the homeomorphic mapping unveils a full family of elegant
geometrical constructs that explain the observations from the
evolution of the full wave function on the Bloch sphere toward
the LP pole in the presence of dissipation. Figure 3(b) shows
the numerical dynamics of the ψC,X,L,U cores obtained for
γU = 0.2 ps−1 � γL, with the excitation and control pulses
whose energy is set close to the UP mode, while the three
rows of Figs. 4(a)–4(c) show the different QS trajectories on
the plane and on the sphere (the isodensity circular orbits)
for the early times of the dynamics at the three successive
times corresponding to S = 0.9, 0.6, and 0 (top to bottom).
The local imbalance map s(x, y) and the isodensity circular
orbits change in time due to the reshaping of the total density
on the Bloch sphere with the change of S(t ), and the trajectory
of the two cores s(x, y) = 0 (corresponding to a local equality
|ψU|2 = |ψL|2) can be seen as a “domain wall” between the
areas of excess of the UP and LP densities in real space
(s > 0 and s < 0, the upper and the lower semispheres on the
Bloch sphere), as shown in the snapshots on the right-hand
side in Fig. 3(b), as well as on the relevant experimental
snapshot in Fig. 3(g). As one can see, the ψC,X vortex cores
first rotate around the ψU core, with a growing orbit radius.
When the UP population decreases to the level of the LP
mode, the orbit becomes a straight line between the positions
of the ψU,L cores (corresponding to the limit of a circle with
infinite radius). The initial configuration hence reverts, and
the ψC,X vortex cores switch to spiraling from clockwise to
anticlockwise direction, around the ψL core now, and with the
decaying orbital radius as S keeps changing. Finally, they both
overlap into the position of the LP core, as this is the surviv-
ing mode at long times. For a better visualization, we refer
to the Supplemental Material, movie SM3 [42]. The actual
vortex trajectories hence result from the orbiting along these
expanding and shrinking circles, with a drifting center. Their
xy projection is a double spiral which is shown in Figs. 3(e)
and 4(c). After the arrival of the pulse B and the initiation of
the dynamics, the difference in dephasing γR = γU − γL ≈ γU

results in the global imbalance S changing with time as S(t ) =
tanh{−γRt + atanh[S(0)]}, which is shown in Fig. 4(d). This
hyperbolic tangent curve can be started at any point S(0) that
is set by tuning the initial excitation energy between h̄ωU

and h̄ωL. The decay alone, resulting in the decrease of S(t )
with time, can be seen as the motion of the total density
|ψtotal|2 downward along the surface of the Bloch sphere, as
represented in the successive panels (top to bottom) of
Fig. 4(a). Similarly to the rotation of the sphere, which be-
longs to the elliptic subclass of the Möbius transformations,
the dynamics produced by different decay rates of the two

normal modes can be seen as the dilation of the sphere, thus
corresponding to the hyperbolic subclass of the Möbius group
[43]. Like the elliptic transformation, the hyperbolic transfor-
mation fixes two points (in our physical case, the points U
and L, i.e., the positions of the lower polariton and upper po-
lariton vortex cores, respectively, in real space), however, the
corresponding trajectories of the QS on the plane would create
a family of circular arcs, along which the points flow away
from the first fixed point (U) and toward the second one (L).
When united together, the Rabi rotation of the Bloch sphere
and its dilation due to the differential decay create yet another
type of continuous transformation that is called the loxo-
dromic Möbius transform [in terms of the previously defined
complex-variable function f (z) = (az + b)/(cz + d ), it is de-
scribed by a = exp{(i�R − γR)t}, and b = c = 0, d = 1, as
before]. Under such a transformation, the resulting trajectories
on the Bloch (Riemann) sphere form a family of loxodromes
(rhumb lines), an example of which is shown in Fig. 4(e) for
the QS evolution in a given arbitrary point in space ri. The cor-
responding trajectories of quantum states on the (x, y) plane
are double-logarithmic spirals (spira mirabilis) in the bipolar
circular coordinates (s, ϕLU), pointing away from the point U
and toward the point L, with the slope of the spiral depending
on the decay to Rabi frequency ratio γR/�R, providing a circle
for γR = 0. The rhumb angle with respect to the isocontent
parallels is precisely defined by tan α = γR/�R both on the
sphere and in real space, due to the conformal mapping. Fig-
ure 4(f) shows the trajectories of a given QS [defined by a
fixed Bloch sphere unit vector si = (s, ϕ0

LU)], for two values
of the ratio γR/�R. With time, all states follow this evolution
toward the longer surviving LP normal mode (thus the total
density shifts to the south of the sphere); at the same time,
each point of the real space increases its LP content, so that
the isodensity lines (s = const) stereographic projections shift
from the region around the point L toward the point U. Finally,
when the vortex cores in all fields coincide in the fixed posi-
tion of the LP core, the pure UP state acquires zero density.

III. VORTEX VELOCITY AND MOMENTUM

A. Core motion and superluminal velocity

The average speed of the vortex core along an orbit de-
pends on the orbit size (∝rorbit), as the oscillation period is
fixed by the Rabi coupling. For example, in the experiments of
Fig. 1(d), the photonic phase singularity is sweeping a closed
xy curve with the mean radius of 20 μm during the first Rabi
loop, resulting in an average speed ∼150 μm ps which is half
the speed of light c in vacuum. Moreover, as noted above, the
vortex core speed is not constant: the largest speed is achieved
when the core is far from the center of the spot, in the orbital
apex position. A natural question arises regarding the maxi-
mum possible speed of rotation. The homeomorphism allows
us to easily track the velocity at which the vortex core travels
during the dynamics. Since the stereographic projection of the
metric formed by the isodensity lines (s = const) and isophase
lines (ϕLU = const) from the sphere to the plane conserves
their orthogonality, the instantaneous tangential velocity of
such motion along s = 0 follows the phase gradient ∇ϕLU

[see the streamlines in Figs. 3(e) and 3(g) and the Supplemen-
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FIG. 5. Vortex core dynamics. (a), (b) In-plane vortex core positions (gray open dots) and trajectory (solid line) swept during the first (a) and
second (b) Rabi loops. The red shading of the lines shows when the vortex core moves at superluminal speed with vcore � c = 300 μm ps−1.
The green open dot in the center maps the position of the LP vortex core (extracted from the experimental data as explained in the Appendix).
(c) Experimental integrated distance swept by the observable photonic vortex core along its trajectory during the first two Rabi cycles. The
dashed lines have a slope corresponding to the speed of light c, as a reference. The color code is the same as in (a) and (b). The superimposed
white solid line results from merging the two separate fittings of the distance by an inverse tangent during each orbital time range (1.2–2.0 and
2.0–2.8 ps). (d) Velocity of the vortex core during the first two Rabi cycles with the same color code as in (a)–(c). (e) Model of the integrated
distance swept by the core in one Rabi cycle, for different orbits parametrized by the global polaritonic imbalance (S values ranging from 0.1
to 0.9, as marked). The distance is expressed in terms of the distance dLU between the LP-UP cores (which is constant for a given realization).
(f) Model of the instantaneous velocity of the core, for different global imbalances [with same color code as in (e)]. The speed is normalized to
the average velocity along a given orbit (〈vcore〉 = 2πrorbit/TR), and is expressed in log scale to compress the different aspect ratios in the same
panel.

tal Material, movie SM4 [42]]. Analogously with the usual
(single-mode) group speed being expressed in terms of the
infinitesimal differentials vg = dω/dk, here one can write
vcore = �ω/|�k| = (ωU − ωL)/|kU − kL| = �R/|∇ϕLU| for
the core velocity. Hence, since the gradient streamlines for a
vortex dipole are circles coinciding with the isodensity orbits
s(x, y) = const (in the considered configuration of concentric
LG beams of the same size), the vector expression for the
core velocity has the form vcore = �R

|∇ϕLU|2 ∇ϕLU. The gradient
|∇ϕLU| is larger in the middle of the vortex dipole, hence
in the inner region the two moving cores are slower than
at the boundary, where they move faster [see the color of
the streamlines in Fig. 3(e)]. From the geometrical point of
view, because the rotation of the Bloch sphere corresponds to
inversion (elliptical Möbius transform), such a drift that is a
uniform on the sphere, when projected on the plane, suffers
the typical Möbius stretch of circles, which is the reason for
the greatly varying velocities with drastic accelerations and
decelerations of the vortex core (or of any chosen QS).

We present in Figs. 5(a) and 5(b) the counterpart of
Fig. 1(d) but for expanded beam sizes where the vortex core
can complete its Rabi cycle with a superluminal maximum
speed. Its in-plane xy orbits during the first and second Rabi
loops are obtained from its instantaneous positions tracked ev-
ery 20 fs and indicated by circles, while the lines are mapping

the trajectory. The integrated distance swept by the vortex core
and the corresponding instantaneous velocities, retrieved from
the latter, are shown in Figs. 5(c) and 5(d), respectively. As
one can see, the vortex goes well over the speed of light (twice
as fast at its peak velocity) and does so cyclically with inter-
vals where it gets almost at rest, implying drastic accelerations
and decelerations. Figure 5(e) shows the integrated distance
swept by the core along a given orbit during the Rabi period
as numerically reproduced for different values of the global
UP-LP population imbalance parameter S. The sigmoid shape
of these curves can be approximated by an inverse tangent of
time, and the corresponding experimental curve in Fig. 5(c)
is fitted with two different inverse tangent dependencies for
the first and the second Rabi loops, respectively. The corre-
sponding computed orbital speed of the core vcore normalized
to the average speed along an orbit [〈vcore〉 = 2πrorbit/TR] is
shown in Fig. 5(f). In both Figs. 5(e) and 5(f), we are using on
the horizontal axis the wrapped orbital time along a generic
Rabi cycle, where t = 0.5TR corresponds to the rotating vortex
reaching the apex position.

While superluminal motion has been previously discussed
[44,45], typically in experiments performed in the region of
anomalous dispersion of an absorbing material and in tun-
neling experiments [44], or upon proper space-time shaping
of a wave packet [45], neither of which, however, applies to
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polaritons. Here, this observation follows from the fact that the
correct description of a full-Bloch beam is in terms of the full
wave function defined on its appropriate space, rather than in
terms of any single-component field. In fact, we note that one
cannot properly speak of a field when there is no QS that is
present in some compact extension of the space. Instead, what
one deals with is a projection of the full wave function onto a
certain observable basis, which can indeed host superluminal
artifacts for any isolated quantum state, which is, in the linear
regime of our experiment, more properly seen as a phase
singularity. The vortex core is one such particular isolated
quantum state (the exciton when observing photons). The
Rabi-rotating vortex in the linear regime is thus a real-world
implementation of the famous superluminal scissor. Just as
the meeting point of two closing blades can go faster than the
speed of light, not being an actual physical object, the core
in the projected photon field 〈x, y|C〉〈C|QS〉 [see Eq. (2)],
which arises from the underlying full-Bloch beam, is simi-
larly a contrived meeting point of the polariton Hilbert space
eigenstates, the upper and lower polaritons (the counterparts
of the scissors’ upper and lower blades), being out of phase.
When they are in phase, they similarly contrive to render the
excitonic core instead, by projecting 〈x, y|X〉〈X|QS〉.

B. Time-varying linear and angular momenta

A complementary picture to the vortex rotational dynam-
ics is provided by the evolution of the linear and angular
momenta. Although both pulses A and B have no mean trans-
verse linear momentum (mTLM) 〈k〉 = 0, and exactly one
unit of angular momentum lA = ±1 from the pulse A, when
the rotational motion of the vortex is triggered, the displace-
ment of the vortices in the LP and UP components from
the origin corresponds to a nonzero net linear momentum
in each component, which results in the oscillations of the
mTLM and the mean OAM of the bare photon and exciton
fields, as shown in Fig. 6. In Fig. 6(a), the mTLM vector
〈kC〉 experimental dynamics is computed from the momen-
tum streamlines [represented in the inset of Fig. 6(a) for
t = 1.5 ps], weighted by the photon density, for successive
moments of time in the range t = 1.5–3.8 ps. The OAM per
particle evolution shown in Fig. 6(b) is retrieved from the
measured photon complex wave function ψC via the direct
integration 〈Lz〉 = i

∫
ψ∗

C(y∂x − x∂y)ψCdr/
∫ |ψC|2dr. While

no external transverse forces that would explain the rotation
of the center of mass and the time-varying linear and angular
momenta are applied, here one deals with a nonconstant mass
problem, in which each field, photon and exciton, coherently
injects particles into its counterpart. The generalized New-
ton equation Fext = 0 = h̄(m dk/dt + k dm/dt ) holds (i.e.,
inside the microcavity, in the case of no loss or dephasing,
the total quantities are conserved). This is analogous as a
concept to the OAM selective evaporation [46] recently used
to increase the mean OAM and create a very large vortex in
atomic BECs. Here, the coherent transfer implies the momen-
tum exchange between the fields, which is responsible for the
periodical change of its instantaneous mean value in any of
the two subsystems.

The numerical evolution of the 〈kC,X〉 vector in each field
is displayed in Fig. 6(c). The OAM with respect to the orig-

FIG. 6. Linear and angular momentum dynamics. (a) Experi-
mental mean transverse linear momentum 〈kC〉 (per particle) in the
photon field as a function of time (red arrow and red line, time range
1.5 to 3.8 ps) and in-plane vector momentum of the LP mode 〈kL〉
(green vector) extrapolated as the limit vector of the photonic one.
The inset shows the density map overlaid with the streamlines of
momentum corresponding to the azimuthal gradient of the phase at
t = 1.50 ps [for the full gradient kC = ∇ϕ, see the maps in Fig. 1(d)].
(b) Experimental OAM (per particle) with respect to the center of the
initial LG01 pulse. Panels (a) and (b) are relative to the same exper-
imental realization as presented in Fig. 1. (c) Modelization of the
transverse mean linear momentum vectors in the four components
〈kU,L,X,C〉. The momenta in the normal modes are fixed and pointing
upward and downward because the vortex cores in these fields are
displaced to the left and right, respectively. The total momentum
〈k〉 keeps always vertical, drifting from 〈kU〉 to 〈kL〉 in time due to
differential decay. The linear momenta in the bare fields oscillate (red
solid/blue dashed for 〈kC〉/〈kX 〉, respectively), in such a way that
their vectorial sum is always instantaneously null in the horizontal
direction. Their vertical components are instead oscillating around
the shifting vector 〈k〉. (d) Mean orbital angular momentum in the
photon (red solid) and exciton (blue dashed) fields with respect to
the initial centered axis of symmetry. Both (c) and (d) are modeled
for a situation of π -opposite displacement of the UP and LP vortex
cores, with the initial and final conditions S = +0.98 and −0.98,
respectively, and �R/γR = 10.

inal center of symmetry o of the beams can be expressed as
Lo = Lcore + rcore × 〈k〉, where Lcore is the iOAM computed
with respect to the moving center of rotation, i.e., the instan-
taneous vortex core, which remains constant and quantized,
equal to the initial topological charge lA. In contrast, both rcore

and 〈k〉 oscillate, being expected to reach their maxima si-
multaneously (maximum net linear momentum for maximally
displaced vortex core) and almost orthogonal to each other, so
that their cross product gives rise to the OAM oscillations. The
oscillations calculated with the wave functions ψC,X through
direct averaging

∫
ψ∗

C,XL̂zψC,Xdr/
∫ |ψC,X|2dr are reported in

Fig. 6(d), and they agree with the above vectorial formula
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for Lo when substituting mean 〈kC,X〉 from Fig. 6(c). The
result can be understood as follows: in the assumption of the
maximal (π ) angular displacement of the UP and LP cores,
the origin o is exactly in the middle of the UP-LP vortex
dipole. For this reason, when the ψC(X) vortex core passes
in-between the points L and U [as shown in the bottom panel
of Fig. 4(c) for the photon core], the total OAM is equal to the
iOAM value ±1. The vortex core of the respective counterpart
ψX(C) at the same moment is at infinity, which means that this
field is vortex free and its OAM is zero. All the other vortex
positions result in the oscillations of 〈Lz〉 between 0 and 1.
Note that the data of Figs. 6(a) and 6(b) were obtained in
the experimental realization of Fig. 1, which means starting
with the LP mode global imbalance (S ≈ −0.25), while the
modelization in Figs. 6(c) and 6(d) was performed with the
initial condition S(0) = 0.98 (with decay to Rabi frequency
ratio set to γR/�R = 0.1), i.e., starting very close to the UP
mode, and the ψC,X vortex cores running through the whole
double spiral from L to U, changing from clockwise to anti-
clockwise direction of rotation. Hence, the experimental panel
[Fig. 6(b)] needs to be compared only to the right half of the
numerical panel [Fig. 6(d)].

The reported oscillations represent a general class of time-
varying OAM, similar to the recently reported self-torque
feature of light [38]. Here, however, the OAM (per particle) is
assuming noninteger values in a periodical fashion, rather than
changing continuously. We thus demonstrate the experimental
creation of OAM fractional values (associated with displaced,
off-axis vortex cores) with ultrafast oscillations (associated
with the swirling core position) in the light emitted from the
polariton system. Furthermore, we likewise evidence the time
variations of the TLM vector, whose amplitude and direction
both oscillate and swirl due to the same core radial and az-
imuthal motions. We point out that the associated features
of the so-called self-torque (and here also self-force) are as
a matter of fact generated inside the device where light is
linearly and coherently interacting with matter (excitons): the
underlying picture is that of the Rabi rotation of the full-Bloch
beam, being projected on the photon field ψC(x, y, t ) at the
moment when the photon escapes the cavity to propagate to
the CCD camera (in case of Ref. [38], instead, it is a nonlinear
phenomenon). Despite the fact that each photon, once being
emitted, is not changing its momentum, and that its motion
in the longitudinal propagation direction is at the speed of
light, such photonic emission could be used to drive another
physical system [47] (e.g., an atomic BEC or optically trapped
nanoparticles) and to study its response to such an ultrafast
stimulus. It would also be interesting to devise the entity of
angular momentum transfer [48] to an external system swept
by our spiraling vortices.

IV. CONCLUSIONS AND OUTLOOK

We have observed experimentally a surprising dynamics of
vortices in multicomponent Rabi-coupled fields, and shown
how the interplay of Rabi oscillations and vorticity exhibits
ultrafast (and even superluminal) spiraling motions of the
vortex core with striking accelerations and decelerations. Such
a phenomenology on its own can provide a starting point as
substantial as Airy beams, Bessel beams, X waves [49,50],

etc., for possible applications, in particular, for micromanip-
ulation of very light particles in the time domain, similarly
to optical micromanipulation by Airy wave packets [51]. At
a more fundamental level, our experiment could also bring
forward important developments regarding the topology of
complex light or on the interpretation of quantum mechanics,
providing an example of a simple and elegant description in
an abstract space not immediately accessible to our physical
reality, which becomes counterintuitive and bizarre in the
physical space where the observation is performed.

Such ultrafast Rabi-rotating vortices follow from the very
peculiar configuration we create, whereby all the quan-
tum states of the polariton Hilbert space are simultaneously
present in the system and mapped throughout the beam in
such a way as to be furthermore present only at a single point
in space. We call such a peculiar state a full-Bloch beam. This
extends the concept of a full Poincaré beam [52] that similarly
realizes all states of polarization in space, but further involving
a quantum dynamics (here the Rabi rotation), which results
in the peculiar phenomenology we report. The description in
terms of uncoupled and steady upper and lower polaritonic
fields overlooks that the two polariton fields are related in such
a way as to exhibit all possible quantum states (their superpo-
sitions), implying nontrivial relationships of their amplitudes
and phases in space and time. Furthermore, by creating such
a peculiar state, we realize, on a physical system, the abstract
mathematical notion of a homeomorphism between the real
physical (x, y) plane (including infinity) and the polariton
Bloch sphere of quantum states. The metric of parallels and
meridians on the sphere is conformally linked to the plane
metric of bipolar circular coordinates, or Apollonian circles.
This allows us to map analytically all the trajectories for all the
quantum states, including vortex cores, in any basis of observ-
ables, by means of the Möbius transformation, and track them
through the stereographic projection between the sphere and
the plane. Such connections illustrate how physical interpreta-
tions in terms of familiar objects, in this case photons, which
are being ultimately detected, may be counterintuitive when
involving extreme topological configurations such as the full-
Bloch beam: once emitted by the cavity, photons represent a
physical field carrying an optical vortex at any time, which,
from one snapshot to the next, can even travel superlumi-
nally, but this effect does not originate from a photon field
inside the cavity since (prior to the measurement) no such
field exists: at all times, the pure photon state is represented
by only one point in space. As a consequence, any physical
observable that is based on the dynamics of vortices in polari-
ton fields (or any coupled multicomponent fields, in general)
should be taken with caution, and one should turn to the full
wave-function description instead in cases where a full-Bloch
beam or any object with similar features is produced. Our
results also provide an extremely simple and fundamental
illustration of the breakdown of the physical picture which
could help understand more complicated cases and serve as a
textbook elementary paradigm of emergent objects acquiring
their own special rules (such as entanglement arises from a full
wave-function description broken onto a particles’ picture). In
particular, further extensions of our results include going be-
yond the homeomorphic mapping with a sphere, for instance,
by spreading significantly the wave function in momentum
space so as to overlap various Rabi rotations of the Bloch
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sphere (higher-order Rabi-rotating vortices), which results in
the creation of vortices and antivortices and thus extends even
further the phenomenologies of these pseudo-objects which
arise from the breakdown of the usual picture. Also, a moving
vortex, interactions, and non-Gaussian states, in particular
nonlocality, impart the Rabi-rotating vortex with similar addi-
tional phenomenologies. These are the topics for future works.
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FIG. 7. Trajectories’ modelization as a function of different key parameters. (i)–(iii) xyt vortex lines for the photon (red), exciton (blue),
UP (purple), LP (green) fields, in the absence of decay (γU = 0), plotted for Elas = h̄ωlas detuned from the bottom of the bare fields dispersions
by �Elas = −3, 0, and 3 meV, which corresponds to the initial values of the global UP-LP imbalance S ≈ −0.75, 0, and 0.75, respectively.
(iv)–(vi) Vortex lines at a fixed excitation energy detuning �Elas = −3 meV [S(0) ≈ −0.75] for three different time delays tAB between the
two excitation pulses, corresponding to the successive increase of the optical phase shift ϕAB from the anti-Rabi phase [see (i) where the UP-LP
cores splitting is maximal] up to the Rabi phase where the UP and LP cores are displaced into the coinciding position (iv). (α), (β) simulations
with the experimental dissipation rate (γU = 0.2 ps−1) included in the cSEs model according to Eq. (A2). In (α), the system is initialized with
a larger UP content [S(0) ≈ 0.75], so that the photon and exciton vortices start to rotate around the UP vortex core (purple line). After the
population reversal due to the faster UP decay, when S(t ) = 0, the vortices switch to rotating around the LP core (green line), thus repeating
the behavior shown in (β), where the excitation energy is closer to the LP mode [S(0) ≈ −0.75]. See also the Supplemental Material, movie
SM2 [42].
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APPENDIX

1. Experimental methods

The excitation laser is a 80-MHZ train of 130-fs pulses
with an 8-nm bandwidth properly tuned in order to resonantly
excite both the LP and UP branches (with their central k = 0
states, respectively, located at 836.2 and 833.2 nm in our
sample), which is required to trigger Rabi oscillations. The
mode splitting of 3 nm (5.4 meV) corresponds to the Rabi
period of TR = 0.780 ps. Once imprinted, the polariton vor-
tices are left free to evolve. We operate in a clean area of the
sample so to avoid any unintentional effects from the disorder
and in the intensity or density regime weak enough in order
not to perturb the vortex dynamics by the nonlinearities. The
positional stability of the vortex is indeed observed in the
dynamics (in absence of the second/displacing pulse), during
the whole LP lifetime (whose decay time is τL ∼ 10 ps), with
typical Rabi oscillations (quenching with the UP dephasing
time τU ∼ 2 ps). Standard beam splitters (BS) and λ/4 plates
are used to separate the beams, control the polarization, and
put them together before sending onto the sample.

In the off-axis digital holography, the resonant emission
is let to interfere on an imaging camera with a time-delayed
reference beam (detection delay line). The reference pulse
is expanded by passing through a pinhole in order to make
it wide and homogeneous. Hence, we apply digital Fourier-
space filtering to retrieve both the amplitude and phase of
the photon wave function. Customized software allows us
to monitor and adjust the dynamics in real time during this
operation. The polarization can be simply postselected on the
detection side by using λ/4 or λ/2 plates and a polarizing
beam splitter.

2. Coupled Schrödinger equations’ model

We write the two coupled Schrödinger (linear) equations
according to the standard polaritonic coupled-oscillator model
(referred to as cSEs model in the main text):

i∂t

(
ψC

ψX

)
=

(
− h̄∇2

2mC

�R
2

�R
2 − h̄∇2

2mX

)(
ψC

ψX

)
+ F , (A1)

where the photonic and excitonic fields ψC,X(x, y, t ), with
their corresponding parabolic dispersions with effective
masses mC,X, are coupled via the Rabi coupling term �R.
The excitation scheme is accounted for through the vector
F = (LG01TA + LG00TB, 0)T , acting only on the photonic
component. The LG01 and LG00 functions describe the vortex
and vortex-free spatial shapes of the two pulses. The functions
TA,B = e−(t−tA,B )2/2σ 2

t e−iωlast describe the pulses’ time shapes,
with the laser pulses being sent at the different times tA,B

but with the same energy h̄ωlas and temporal spread σt . The
resulting motions of the vortex cores, obtained by tracking the
phase singularity points in the photon and exciton components
ψC,X and the LP and UP fields ψL,U = (ψC ± ψX)/

√
2 in

space and time, are presented in Figs. 7(i)–7(vi) and the Sup-
plemental Material, movie SM2 [42]. The first three panels
7(i)–7(iii) show the modelization cases of different detunings
of the excitation energy h̄ωlas from the coinciding bottoms of
the bare photon and exciton dispersions. Then, the system is
excited closer to the LP energy, that makes the lower polariton

FIG. 8. Experimental reconstruction of the polariton fields. (a),
(b) Experimental oscillations of the photon density (blue dots) and
their fitting by the theoretical model (black solid line), at two
different locations of space [from the same realization of Figs. 5(a)–
5(d) and 3(g)] that feature opposite initial local polariton imbalance
(s < 0 and s > 0, respectively) as well as quadrature initial relative
phases in quadrature (ϕ0

LU = 0 and −π/2, respectively). The purple
and green filled area represent the instantaneous UP and LP densities,
respectively. (c) The original experimental photon density map is
shown (first row) together with the reconstruction in time by the
theoretical model of both its photon (second row) and exciton (third
row) components, for four different times.

population prevail, i.e., S < 0 [in case of Fig. 7(i) which coin-
cides with Fig. 3(a) in the main text, S ≈ −0.75], the equator
of the polariton Bloch sphere (isodensity line |ψC| = |ψX|) is
projected on the plane closer to the |U〉 state, thus the photon
and exciton cores start to describe circular orbits around the
fixed position of the LP core. In the case of a fully symmetric
excitation S = 0, shown in Fig. 7(ii), this circle becomes a
straight line exactly in the middle between the UP and LP
cores positions (corresponding to the limit of a circle with
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an infinite radius). Finally, Fig. 7(iii) displays the case of the
excitation closer to the UP mode (S ≈ 0.75), in which the C
and X cores’ orbit lies closer to the projection of the |L〉 state
onto the plane, i.e., around the UP core. Figures 7(iv)–7(vi)
show the modelization results for a fixed value of ωlas, closer
to the LP energy, but for different time delays tAB between the
LG01 and LG00 pulses. One can see that with an increased
delay, the angular difference between the displacements of
the UP and LP cores changes, which results in the overlap of
all core positions in the case where tAB is equal to an integer
number of the Rabi periods 2π/�R [see Fig. 7(vi)].

The term γU � γL accounting for the UP lifetime [32] can
be introduced in Eqs. (A1), once written in the polariton basis
by diagonalization:

H̃ =
(

EL 0
0 EU − iγU

)
. (A2)

One can come back to the photon and exciton basis by ap-
plying the eigenvector matrix P of the original Hamiltonian:
H = PH̃P−1. As a result, one can plot, similarly to the loss-
less case, the xyt vortex lines for the four fields, as shown
in Figs. 7(α) and 7(β). The top panel [(α), coinciding with
Fig. 3(b) in the main text] shows the case of the excitation
closer to the UP energy and the ψC,X vortices undergoing
a double spiral, first rotating clockwise around the UP core
and then anticlockwise around the LP core. The bottom panel
[Fig. 7(β)] shows the dynamics after the excitation closer to
the LP energy, which corresponds to the experimental case of
Fig. 1 of the main text.

3. Closed-form solutions and experimental fit

Since we are in the linear regime, and replacing the se-
quence of pulses by suitable initial conditions, we can express
directly the photon density at each point in space simply in
terms of a superposition of the eigenmodes, as follows:

|ψC|2 = |ψL|2 + |ψU|2 + 2|ψL||ψU| cos(ϕ0
LU + �Rt ). (A3)

The UP and LP modes’ decay can also be included in Eq. (A3)
as |ψU,L(t )| = |ψU,L(0)| exp(−γU,Lt ). With the fixed exper-
imental values for γU, γL, and �R, and treating |ψL(r, 0)|,
|ψU(r, 0)|, and ϕ0

LU (r) as fitting parameters, we can fit in
time and at each point (x, y) of the spot the experimental
photon wave function ψC, with the simple Rabi dynamics
(A3). This provides the density profiles of the UP and LP
polariton fields, as well as their relative phase spatial profile
presented in Fig. 3(g). In a similar fashion, the position of
the LP core shown in Figs. 5(a) and 5(b) is calculated from
the experimental data by the fitting of Eq. (A3). The third
panel in Fig. 3(g) is obtained by inserting the fitted |ψL| and
|ψU| at t = 2.0 ps into the definition for the local UP-LP im-
balance parameter: s = (|ψU|2 − |ψL|2)/(|ψU|2 + |ψL|2). An
example of time fitting (black solid lines) the photon density
(blue dots) according to Eq. (A3) is shown in Figs. 8(a) and
8(b) at different spatial positions that feature different initial
local imbalance s(0) [s(0) < 0 and s(0) > 0, respectively] and
different ϕ0

LU (ϕ0
LU = 0 and −π/2, respectively). The fitting is

performed along eight Rabi periods in the time range 2.0 to
8.4 ps, which is starting from the second Rabi cycle, i.e., after
the setting sequence of both pulses A and B. The comparison
of the fitting dynamics with the experimental data are shown
in Fig. 8(c), for four times into the second Rabi cycle.
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