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Abstract. We propose and characterize a two-photon (2P) source that emits
in a highly polarized, monochromatic and directional beam, realized by means
of a quantum dot embedded in a linearly polarized cavity. In our scheme, the
cavity frequency is tuned to half the frequency of the biexciton (two excitons
with opposite spins) and largely detuned from the excitons thanks to the large
biexciton binding energy. We show how the emission can be Purcell enhanced
by several orders of magnitude into the 2P channel for available experimental
systems.
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1. Introduction

Two photons can be used as fundamental building blocks for an extended range of Quantum
Information Processing protocols, with applications in quantum metrology [1], quantum
communication and cryptography [2–4], linear-optics quantum computation [5–9] and even
for fundamental tests of quantum mechanics such as hidden variable interpretations [10, 11].
A number of devices have been proposed and experimentally demonstrated with atomic
gases [12–14] or nonlinear crystals [1, 15, 16]. The realization of such devices, however, is
a highly nontrivial task since, in order to be useful, the generated photons need to be almost
identical, narrow-band and generated with a high repetition rate. Useful quantum states made
from two photons include pairs of identical photons, which are, however, not necessarily
superimposed in space and/or in time, and the two-photon (2P) Fock states |2〉 where the
two photons share the same attributes in their energy, space and time profile, encoding the
information in their polarization. Standard protocols for quantum computation may rely on
non-superimposed photon pairs [2], but 2P states can be used for more efficient quantum
computation [7].

Some of us and coworkers have recently proposed a 2P generation scheme based
on a single quantum dot embedded in a microcavity [17], which theoretically fulfils all
the above requirements and, moreover, as it is based on semiconductors, is particularly
promising for optical access, on-chip integration, output-collection and scalable technological
implementations [18–21]. The principle relies on the biexciton (the occupation of the quantum
dot by two excitons of opposite spins) being brought in resonance with twice the cavity photon
energy. Thanks to the large biexciton binding energy, single-photon processes are detuned and
are thus effectively suppressed, while simultaneous 2P emission is Purcell enhanced [17]. This
effect has been recently demonstrated experimentally [22]. In the experiment, as in the initial
proposal, the signature for the 2P emission is a strong emission enhancement of the cavity mode
when hitting the biexciton 2P resonance. Because of incoherent excitation used in both the
theoretical proposal and its experimental realization, the quantum character of the 2P emission
is not directly demonstrated or quantified.5 Here, we upgrade to a configuration that is nowadays
experimentally accessible, where the quantum dot is initially prepared in a pure biexciton state,
and we analyze in detail the underlying microscopic mechanisms, demonstrating the perfect
2P character of the emission beyond a mere enhancement at the expected energy. We show
how the 2P state is created by the system in a chain of virtual processes that cannot be broken

5 The authors of [22] also realize this limitation and speculate on the scheme that we analyze here in detail.
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Figure 1. Cavity spectra of emission S(t, ω) at the 2P resonance for different
times (unframed) and integrated over all times (framed). They feature the 2P
peak at ωa ≈ −χ/2 (central, blue), with total intensity L I + L II, and the two 1P
peaks at ω1 ≈ −χ (left, red) and ω2 ≈ 0 (right, pink), with intensities L1 and L2.
The physical processes giving rise to these peaks are spelled out in figure 2(b)
with the same color code. The 2P peak cannot be decomposed into two separate
physical processes. Parameters: χ = 20g, κ = g and γ = 5 × 10−4g.

apart in physical one-photon states. Our understanding is analytical and allows for optimization
of a practical setup, enabling the realization of an efficient source of two simultaneous and
indistinguishable photons in a monolithic semiconductor device.

2. Mechanism of two-photon (2P) emission

The characteristic spectral profile of the cavity-assisted 2P emission is shown in figure 1, with
a central peak that is strongly enhanced at the 2P resonance, corroborating its 2P character, and
surrounded by standard (single-photon) de-excitation [17, 22]. The 2P peak is spectrally narrow
and isolated from the other events, which can never be completely avoided, so the source is
appealing on practical grounds. The Hamiltonian of the system reads [17]

H(t) = (ωa − ωL)a
†a +

∑
i=↑,↓

(ωX − ωL)σ
†
i σi − χσ

†
↑
σ↑σ

†
↓
σ↓

+
∑

i=↑,↓

[
gi(a

†σi + aσ
†
i ) + �i(t)(σi + σ

†
i )

]
, (1)

where we have included i = ↑, ↓ the spin-up and spin-down degrees of freedom for the excitonic
states σi (fermions) with common frequency ωX and a the cavity field annihilation operator
(boson) with frequency ωa. The cavity mode should have a strong polarization, say linearly
polarized in the horizontal direction for a photonic crystal, a case we shall assume in the
following. The biexciton binding energy χ allows us to bring the biexciton energy ωB in
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resonance with the 2P energy while detuning all other excitonic emissions from the cavity mode.
It is red (blue) shifted if the biexciton is ‘bound’ (‘antibound’), giving rise to a positive χ > 0
(negative χ < 0) binding energy χ = 2ωX − ωB. Our scheme works with both the bound and the
antibound biexciton. Without loss of generality, we assume χ > 0, with the added advantage of
being less affected by pure dephasing and coupling to phonons [23], which we neglect. This
binding energy is typically large (χ ≈ 400–3000 µeV) as compared to all the parameters in the
system [22, 24], which is ideal for our purpose. It is for instance much larger than the fine
structure splitting between excitonic states (≈10 µeV), even though in our case, this splitting is
not detrimental to the mechanism as will be shown later.

We will assume an equal coupling of both excitons to the linearly polarized mode of the
cavity, g↑ = g↓ = g/

√
2, and take g as the unit in the remainder of the text.6 The Hilbert space

of the quantum dot is spanned, in its natural basis of circular polarization, by the ground |G〉,
spin-up |↑〉, spin-down |↓〉 and biexciton |B〉 states. In the linearly polarized basis, the excitonic
states are |H〉 = (|↑〉 + |↓〉)/

√
2 and |V〉 = (|↑〉 − |↓〉)/

√
2. The dot–cavity joint Hilbert space

includes the photonic number n: | j, n〉, where j = G, V, H and B, with n ∈ N.
The quantum dot is excited by a laser of amplitude �i(t) and frequency ωL, which

brings it in the biexciton state through 2P absorption. This can be realized via two appropriate
coloured pulses [25, 26] or, more efficiently, by a single pulse spectrally matching the direct 2P
absorption [24], ωL = ωB/2 = ωX − χ/2. The laser polarization should be taken orthogonal to
that of the cavity, �↑(t) = −�↓(t) = �(t)/

√
2, so that the latter is not affected by the excitation

process. Such an inversion of the system into the biexciton state has been demonstrated, both
theoretically and experimentally [24]. In the case of a single excitonic transition (two-level
system) under pulsed excitation, it is well known that the population inversion follows single-
photon Rabi oscillations as a function of the pulse total intensity θ =

∫
�(t) dt only, according

to the pulse area theorem, as sin2(θ/2). In the case of 2P resonant excitation of the biexciton, the
oscillations depend also on the pulse shape, duration τP and binding energy χ . Only when the
pulse becomes very strong, h � vsP, one finds the simple relation sin2[θ/(2

√
2)] independent

of the pulse characteristics. The pulse should be intense enough in order to fully invert the
population into the biexciton state, short (typically of a few picoseconds) in order to minimize
the effect of dephasing, and spectrally much narrower than the binding energy in order to
minimize the excitation of the intermediate excitonic state [24]. Another promising possibility
is the rapid adiabatic passage from the ground to the biexciton state via a frequency-sweeping
pulse, as proposed in [27]. This has recently been achieved experimentally for the single exciton
inversion [28, 29] and has the advantage of being largely unaffected by variation in the dipole
coupling or in the optical field, typical of quantum dots. To summarize, coherent control of
excitonic states has made significant progress over the last few years [30] and successful
manipulation of the biexciton has been reported in several works [24, 25, 31–35]; therefore,
we will assume the biexciton in an empty cavity, |B, 0〉, as the initial state following the pulse.
The fact that the probability to excite the biexciton is less than one in an actual experiment
does not change qualitatively our results, but merely decreases the efficiency of the mechanism
by this probability. The small spurious population of the excitonic intermediate state |V〉 does
not directly affect the results either, because it is disconnected from the cavity dynamics. This
is also why the fine structure splitting between |H〉 and |V〉 is not important for the physics

6 With typical values of g = 50 µeV in the laboratory [22], the other parameters used for the simulation come out
as χ = 1 meV, κ = 50 µeV and γ = 25 neV.
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Figure 2. Level scheme of a quantum dot coupled to a cavity mode with linear
polarization H at the two-photon resonance. In (a), the microscopic configuration
including dot–cavity coupling g, cavity losses κ and excitonic spontaneous
decay γ . In (b), the effective processes taking place in the de-excitation of the
biexciton through the cavity mode: on the one hand, the emission of two real
and distinguishable photons ω1 and ω2 (in dotted red and pink), and on the other
hand, the simultaneous emission of one 2P state at ωa (in dashed blue), labeled
ωI,II. These three events give rise to the three peaks composing the spectra in
figure 1 (with the same color code).

described: while it should be taken into account in the excitation process to ensure the spectral
matching with the 2P excitation field (V-polarized), it does not enter the equations that describe
the de-excitation process. This recourse to one polarization path only is an additional advantage
of our scheme as compared to others that rely on the biexciton decay through both of the
excitonic paths, such as in the generation of entangled photon pairs [35, 36].

With the previous considerations, the Hamiltonian in the basis of linearly polarized states
reads

H = ωaa†a + ωX(|H〉 〈H| + |V〉 〈V|) + (2ωX − χ) |B〉 〈B| + g[a†(|G〉 〈H| + |H〉 〈B|) + h.c.], (2)

where it now appears explicitly that the cavity couples only to its corresponding linear
polarization (H). Dissipation affects the bare states, i.e. in the spin-up/spin-down basis, yielding
a master equation:

∂tρ = i[ρ, H ] +
κ

2
La(ρ) +

γ

2

∑
i=↑,↓

[L|G〉〈i | +L|i〉〈B|](ρ), (3)

where Lc(ρ) = 2cρc†
− c†cρ − ρc†c, with κ the cavity losses and γ the exciton relaxation rates.

In this study, we assume that γ � κ , which is the typical experimental situation. Figure 2 shows
the self-consistently truncated configuration of levels involved in the biexciton de-excitation.
The coherent coupling (g) is represented by bidirectional green arrows, spontaneous decay (γ )
by straight grey arrows and cavity decay (κ) by curly blue arrows, each of them linking in a
reversible (g) or irreversible (γ , κ) way the different levels.

A one-photon resonance (1PR) is realized when the cavity is set at resonance with one of
the excitonic transitions: |B, 0〉 → |H, 0〉 with frequency ω1 ≈ ωB − ωX or |H, 0〉 → |G, 0〉 with
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frequency ω2 ≈ ωX. The resonant single-photon emission is then enhanced into the cavity mode
according to the conventional scenario [37], with a Purcell decay rate:

γP = 4g2/κ. (4)

A two-photon resonance (2PR) is realized when the transition |B, 0〉 → |G, 0〉 matches
energetically the emission of two cavity photons [17]:

ωa ≈ ωX − χ/2 with χ � g, κ, γ. (5)

This process also benefits from Purcell enhancement. In fact, if the decay rates κ and γ are small
enough, 2P Rabi oscillations between states |B, 0〉 and |G, 2〉 are realized, with a characteristic
frequency g2P ≈ 4g2/(

√
2χ) [17]. Note that in equation (5), we have neglected the small Stark

shifts ≈ g2P, which should be taken into account to achieve maximum Rabi amplitude. In this
paper, to remain within experimentally achievable configurations, we consider systems whose
figures of merit are such that the system is in strong coupling at the 1PR, 4g ' κ . However,
the coupling needs not be so large that the system is in strong coupling also at the 2PR. That
is, we remain within the 2P weakly coupled regime, 4g2P � j, where 2P oscillations do not
actually take place. In these conditions, at the 2PR, the one-photon Rabi oscillations (e.g.
|B, 0〉 ↔ |H, 1〉) still take place at the frequency g but, as they are largely detuned, the coupling
strength effectively reduces to g1P ≈ g/

√
1 + [χ/(γ + κ)]2 ≈ gκ/χ [38].

3. Demonstration of the 2P emission at the 2P resonance

To characterize and analyze the main output of the system, shown in figure 1, we study the
time-resolved power spectrum S(t, ω) ∝ <

∫ t
0 dT

∫ t−T
0 dτei ωτ

〈a†(T )a(T + τ)〉 [39] that we
compute as [40]

S(t, ω) =
1

π

∑
α∈{1,2,I,II,...}

(
L̃α(t, ω)

γα

2

(
γα

2 )2 + (ω − ωα)2
− K̃α(t, ω)

ω − ωα

(
γα

2 )2 + (ω − ωα)2

)
, (6)

where we emphasized in the sum four dominant processes labeled 1, 2, I and II (the results
below include all processes). Each α corresponds to a transition in the system, characterized
by its frequency (ωα) and broadening (γα), which allow us to identify its microscopic origin, as
discussed below. The quantities L̃α and K̃α are real-valued functions of time and frequency,
which correspond, respectively, to the time-integrated signal and its interference with other
transitions, up to time t . They tend at infinite time to frequency-independent quantities that
we label without tilde, Lα and Kα, corresponding to their full time-integrated values. Therefore,
Lα quantifies the total intensity emitted through a given transition α. As such, this is one of the
principal quantities of interest in this paper, which is experimentally accessed by conventional
photoluminescence measurements. The time-dependent spectra of emission, on the other hand,
can be obtained with a streak camera [41].

The system decays via the cavity mode (through the annihilation of a photon a) or via
spontaneous emission into the leaky modes (related to the four excitonic lowering operators).
With the biexciton state in an empty cavity, |B, 0〉, as the initial condition, we identify three
main de-excitation mechanisms of the system. We now describe them in turn.

1. The first decay route is a cascade of two spontaneous emissions, from |B〉 to |H〉 (or |V〉)
in a first time, and then from |H〉 (or |V〉) to |G〉 in a second time, as shown by straight gray
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lines in figure 2(a). This decay into leaky modes is at the excitonic energies, ω1, ω2, and
is a direct process with a straightforward microscopic origin as a transition between two
states. Each process happens at the rate γ , so that, as far as the biexciton is concerned, its
total rate of de-excitation through this channel is 2γ . The effect of this channel is to reduce
the efficiency of de-excitation through the cavity mode, which is the one of interest. This
can be kept small by choosing a system with a small γ .

2. The second decay route is another cascade of one-photon emissions, but now through
the cavity mode, namely from |B〉 to |G〉 passing by |H〉. It is shown by dotted lines in
figure 2(b). It effectively amounts to two consecutive photons into the cavity mode at
the excitonic energies ω1 and ω2, also shown by curly lines with the same color code
in figure 2(b), but the microscopic origin is now more complex, as it involves virtual

intermediate states. The first photon, 1, is emitted through the process |B, 0〉
|H,1〉

−→ |H, 0〉,
via the off-resonant (‘virtual’) state |H, 1〉 and the second, 2, similarly through the process

|H, 0〉
|G,1〉

−→ |G, 0〉. Due to the dispersive coupling, the initial state in each of these processes
(which has no photon) acquires a small component, C1P = 2g/χ , from the corresponding
virtual state (which has one photon). It is through this component that it can effectively emit
a cavity photon, at rate κ . The effective total decay rate can be understood as the probability
to transit to the virtual state times the photon decay rate: j1P = C2

1Pj. This derivation leads
to the same result as directly computing the Purcell decay rate in the dispersive regime,
κ1P = 4g2

1P/κ . We estimate the positions and broadenings of the two resulting spectral peaks
(α = 1, 2 in equation (6)), by applying the quantum regression theorem within an effective
Hilbert space [40] excluding V-polarized and 2P states (none of them being an initial or a
final state of the aforementioned processes). The minimal regression matrix to reproduce
the main spectral features, including the two transitions under discussion, is 4 × 4. With
this prescription, ω1 ≈ −χ − 2g2/χ , ω2 ≈ 2g2/χ and γ1 ≈ 3γ , γ2 ≈ γ . The broadenings
of the transitions correspond, as expected on physical grounds, to the sum of the decay
rates that affect the initial and the final state, without any influence of the virtual ones.

3. Finally, the central event in our proposal is formed by the third channel of de-excitation
of the biexciton, namely the emission into the cavity mode of two simultaneous and
indistinguishable photons with a frequency very close to that of the cavity ωI ≈ ωII ≈ ωa.
This process is sketched by the single dashed blue line in figure 2(b), with an intermediate
step marked by a point at |G, 1〉. Effectively, this amounts to the generation of a 2P state,
represented by the two curly transitions ωI,II in figure 2(b). The two indices I and II strictly

correspond to transitions that arise in the spectral decomposition (6), namely |B, 0〉
|G,2〉

−→

|G, 1〉 for the first sequence of events, I, and the closing of the path, |G, 1〉 → |G, 0〉, for the
second transition, II. Although we have used I and II in figure 2 to label the two photons for
the sake of illustration, these two photons are indistinguishable and cannot be interpreted as
real events taken in isolation in association with the above sequences of transitions. Indeed,
each event gives rise to an unphysical spectrum (assuming negative values) and only when
both processes are taken together, they interfere to sum to a physical spectrum which can be
interpreted as a probability of (2P) detection. This decomposition of the 2P (central) peak
is shown in figure 1 in the time-dependent spectra, with the process I shown by a dotted
line and II by a dashed line. They sum to the physical (observable) peak, in solid line. Both
peaks grow together in time and develop an asymmetry, one being completely positive, I,
the other completely negative, II. None, not even the fully positive peak, can be observed
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Figure 3. Mandel parameter Q(t, τ = 0) as a function of the cavity frequency
ωa, for a set of typical parameters (χ = 20g, κ = g and γ = 5 × 10−2g). Q(t, τ )

is shown on the right panels at the two relevant resonances: (a) 2P and (b) one-
photon. There is a change in the statistics from antibunching <0 (1PR), colored
in blue, to bunching >0 (2PR), colored in red.

in isolation. In contrast, the single-photon peaks on both sides (red and pink) are formed by
single, isolated transitions, showing their real (as opposed to virtual) nature. The Purcell
rate of the 2P emission is again related to the small component of |G, 2〉 that the initial
state |B, 0〉 grows due to the weak 2P coupling, C2P = 2

√
2g2/(χκ). Given that the rate

of photon emission of the state |G, 2〉 is 2κ , in this case we have κ2P = C2
2P2κ , equivalent

to κ2P = 4g2
2P/(2κ). Following our analytical approach, we find ωI ≈ −χ/2 + 2g2/χ with

broadening γI ≈ κ + 2γ (this is the sum of the decay that the initial and final states, |B, 0〉

and |G, 1〉, suffer). The other transition, II, stems from the direct process |G, 1〉 → |G, 0〉.
This transition appears at ωII ≈ −χ/2 − 2g2/χ with broadening γII ≈ κ .

A compelling proof of the 2P character of the central peak is given by the time-dependent
spectrum (figure 1). Whereas the single-photon events grow in succession—first the L1 peak
that populates the state |H〉, which subsequently decays to |G〉, forming the L2 peak—the 2P
peak arises from the joint and simultaneous contribution of the I and II processes. In fact,
one can show that at the 2PR, L I + L II ≈ 2〈a†2a2

〉, linking directly the intensity of the peak
with the 2P emission probability. This can be brought to the experimental test by resolving
the photon statistics in time, g(2)(t, s) = 〈a†(t)a†(t + s)a(t + s)a(t)〉/[na(t)na(t + s)], where
na = 〈a†a〉 is the mean cavity photon number. We use the Mandel Q-parameter to illustrate
this, Q(t, τ ) = na(t)(g(2)(t, τ )− 1), since it changes sign with the nature of the correlations
(negative for anticorrelations). This is shown in figure 3, with a strong and sharp bunching of
the emission when the cavity hits the 2P resonance (meaning that photons come together, and
in our case, in pairs), while it is antibunched in other cases (photons coming separately). What
is remarkable about the 2P emission is that it is consistently bunched at all times: while the
system can emit at any time, when it does, it emits the two photons together. In contrast, the
1PR emission is mostly antibunched, as expected, but it also has the possibility to be bunched
by fortuitous joint emission of two photons. This is the case when ωa = ω2, the cavity is then in
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resonance with the lower transition, which can start only as a successor of the upper transition
resulting in a high probability for two-photon detection, but only at very early times, since one
photon is a precursor of the other one in a cascade of two otherwise distinguishable events.
The proof is complete with the autocorrelation time τ , shown in panels (a) and (b), further
demonstrating that in the 2PR emission, the two photons arrive at zero time delay (the emission
being less likely again at nonzero delay). Cross-correlation measurements between the three
filtered peaks would also show strong features, namely anticorrelations at all delays between all
the peaks, with the exception of the positive cross-correlation between 1 and 2 (in this order and
with some delay) and positive autocorrelation of the central peak (at zero delay).

4. Efficiency of the 2P emission

Now that we have demonstrated from various points of view the 2P character of the central
peak, we aim to maximize it as compared to all other de-excitation channels.

Although we present and plot numerical results of the full master equation (3) throughout
the paper, we also provide analytical expressions for the magnitudes of interest. In order to
compute intensities of emission, Lα, we need to obtain the full density matrix. As in the case
of applying the quantum regression theorem, we can exclude in the derivation the V polarized
states. Note, however, that |G, 2〉 plays a central role in the one-time dynamics and must be
included in the estimation of the density matrix elements. There are three key parameters to
enhance the 2P emission: κ , γ and χ . The case γ = 0 is the ideal configuration, where all the
emission goes through the cavity:

Ia =

∫
∞

0
na(t) dt = 2/κ, (7)

which, in the limit χ → ∞, is redistributed between the two possible decay paths as

L1 + L2 ≈
κ1P

κ1P + κ2P
Ia ≈

2

γP + κ
, (8)

L I + L II ≈
κ2P

κ1P + κ2P
Ia ≈

2γP/κ

γP + κ
. (9)

This is shown in figure 4(a), where we see that the 2P emission dominates over the 1P when
κ < 2g (shaded in yellow in figure 4(a)), since in this case κ2P > κ1P. For cavities with a high
enough quality factor (small κ), the 2P emission is over four orders of magnitude higher than
the 1P, showing that the device is extremely efficient for good technological systems [42].

When γ is nonzero—the situation of experimental interest—but is still the smallest
parameter (γ � κ, g � χ ), the channel of decay that it opens leads to

Ia =

∫
∞

0
na(t) dt =

γP(γP + κ)

γ χ2
, (10)

which is now redistributed between the two cavity decay paths as an increasing function of χ−2:

L1 + L2 ≈
κ1P

κ1P + κ2P + 2γ
Ia ≈

γPκ

γχ 2
, (11)

L I + L II ≈
κ2P

κ1P + κ2P + 2γ
Ia ≈

γ 2
P

γχ2
. (12)
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Figure 4. (a) Intensity L I + L II of emission in the 2P channel (blue) and L1 + L2 in
the two 1P channels (red) as a function of κ , for χ → ∞ in the most efficient case
γ = 0. The shaded yellow area κ < 2g shows the region where the 2P emission
dominates. (b) Same as before for κ = g as a function of χ , that must be large
enough so that 1P are suppressed and small enough to maintain a high cavity
emission efficiency in the realistic case of nonzero γ .

This nonzero γ case is shown in figure 4(b), where the most efficient situation can be
recovered in a region of χ bounded above by

χmax = min
(

2g
√

κ/(2γ ), 4g2/
√

2κγ
)

, (13)

which follows from 2γ = min(κ1P, κ2P). Above χmax, the 2P emission still dominates over 1P
emission but efficiency is spoiled, according to equations (11), which are shown by dashed tilted
lines.

5. Conclusions and outlook

In conclusion, we have presented a scheme where the biexciton is in 2P resonance with a
microcavity mode, as an efficient 2P source, both in terms of the purity of the 2P state and
of its emission efficiency. The timescale for 2P emission, which limits the repetition rate, is
of the order of κ−1

2P and the linewidth of the 2P peak ≈ κ is determined by the cavity quality
factor. The quantum character of the 2P emission is demonstrated theoretically by a detailed
analysis of all the processes involved in the biexciton de-excitation, which also allows us to
find analytically the optimum conditions for its realization. We have shown that the 2Ps are
emitted simultaneously with no delay in the autocorrelation time. Experimentally, the ultimate
proof of indistinguishability can be obtained by directing the central peak to a beam splitter,
which half of the time will separate the photon pair into two ports that can then be fed in a
Hong–Ou–Mandel interferometer.
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