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I. COMPLEX CALCULUS

• in takes the values i,−1,−i, 1 and then cycles through this again for n = 1, 2, 3, 4 and counting. We therefore
have to figure out with which value n = 12345 is associated to. We write it i12345 = i × i12344 and since
12344 = 12000 + 300 + 44 = 2× (600 + 150 + 22) = 2× 772, we find i12344 = i2×772 = (i2)772 = (−1)772. Since
772 is even, the sign is squared, and the result is:

i12345 = i . (1)

• We first compute z = ln(i), the complex number z such that exp(z) = i, that is, from the polar representation,
z = iπ/2. The result now follows from ln(iπ/2), i.e., on the principal branch:

ln(ln(i)) = iπ/2 + ln(π/2) . (2)

To sketch the result, we will use ln(i)+ln(π/2) =≈ 1.57i+b with 0 < b < 1 from the properties of the logarithm
(with ln(1) = 0 and ln(e) = 1 with e ≈ 2.71.

• We start by the bottom of the continued fraction:

1. 1/(1 + i) = (1− i)/|1 + i|2 = (1− i)/2 so i+ 1/(1 + i) = (1 + i)/2.

2. 1/[(1 + i)/2] = (1− i) using the previous result so the second step from bottom is simply 1.

3. i+ 1/1 = 1 + i and we are back at the step at which we started.

The continued fraction will thus oscillate (as is typical of complex numbers) between the values (1 + i)/2, 1 and
1 + i. As we have five stages of fractions, the result is:
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1
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1

1 + i

= 1 . (3)

To plot the inverse, the conjugate and the opposite of each case, we remind the geometric properties of these:

1. The conjugate is the image wrt the x axis.

2. The opposite is the image wrt the origin.

3. The inverse is the conjugate with inverse module.
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FIG. 1: Graphical representation of the solutions to exercise one, with (left) and without (right) labels.

II. MATHEMATICAL REASONING

If |f | > |g| everywhere, then |f | > 0 everywhere since |g| ≥ 0. Therefore f is never zero and, dividing, we have
h = g/f an entire function (everywhere holomorphic with derivative (g′f − fg′)/f2). Now since |h| = |g/f | = |g|/|f |
is bounded (by 1), h itself is, by Liouville’s theorem, constant. Calling α this constant, h = g/f = α.

To prove the stronger result with an inequality on the given particular cas, we invoke Cauchy’s integral formula for
the derivative:

f ′(z) =
1

2iπ

∮
f(w)

(z − w)2
dw (4)

that, for any z ∈ C, shows that |f ′(z)| ≤ 1
2π ×Max( |f(z+R exp(iθ))|

R2 )× 2πR (we have used as an integration contour a

circle centered on z and of radius R > 0). Now since we have assumed |f(z + Reiθ)| ≤ |c||z + Reiθ|, we have, from
the triangle inequality, Max(|f(z +Reiθ)|) ≤ |c|(|z|+R) and, putting everything together:

|f ′(z)| ≤ |c| |z|+R

R
(5)

with R arbitrary, that is, |f ′(z)| ≤ |c| by taking the limit R → ∞. We have just proved that f ′, itself an entire
function, is everywhere bounded, that is, from Liouville’s theorem again, f ′ is constant, and therefore, integrating,
f(z) = az + b with a 6= 0. At z = 0 the inequality reads |b| ≤ 0, i.e., b = 0, thus f(z) = αg(z) with α = a/c.

III. CONFORMAL MAPPING

The implicit equation reads:

z − (−1)

z − 1

0− 1

0− (−1)
=
w − (−1)

w − 1

i− 1

i− (−1)
,

i.e., − z+1
z−1 = w+1

w−1
(i−1)2

2 , or, by further evaluation − z+1
z−1 = iw+1

w−1 , which we have to solve for w. Collecting such terms,

we get w(i+ z+1
z−1 ) = −i+ z+1

z−1 and then w = −i(z−1)+z+1
i(z−1)+z+1 , so that w = z(1−i)+1+i

z(1+i)+1−i . Dividing every term by 1− i, since

(1 + i)/(1− i) = i, we find:

w =
z + i

zi+ 1
.

By direct computation, we find:

1. −2→ −(4 + 3i)/5, which is on the unit circle (modulus is 1), on the third quadrant.
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2. −1/2→ (−4 + 3i)/5, also on the unit circle but now on the second quadrant.

3. −i→ 0.

Given that the Möbius transform describes inversion of the plane, and transforms lines into circles (possibly of
infinite radius), with the above punctual transformations we can assert that:

1. The segment −1 ≤ x ≤ 1 is mapped to the half unit circle in the upper part of the plane.

2. The line x < −1 is mapped to the unit circle in the third quadrant of the plane.

3. The line 1 < x is mapped to the unit circle in the fourth quadrant of the plane.

Given that −i is mapped to the origin, inside the unit circle, we conclude the half-complex plane Im(z) < 0 is
mapped to the open ball |w| < 1.
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The Möbius transform that maps (-1,0,1) to (-1,i,1).

FIG. 2: Mapping of the points and regions given in the text through the conformal transform z(1−i)+1+i
z(1+i)+1−i

.

IV. COMPLEX DIFFERENTIATION

We will use Cauchy-Riemann’s condition, that we remind here. For f(x + iy) = u(x, y) + iv(x, y), f is complex-
differentiable iff

∂xu = ∂yv , (6)

∂yu = −∂xv . (7)

We merely have to compute:

1. u = x/y and v = 0 (the function is real), so that the CR conditions are satisfied iff ∂x(x/y) = 1/y = 0 and
∂y(x/y) = −x/y2 = 0 which is never the case: the function is nowhere differentiable

2. u = x2y3 and v = x3y2, so that the CR conditions are satisfied iff ∂x(x2y3) = 2xy3 = 2x3y = ∂y(x3y2) and
∂x(x3y2) = 3x2y2 = −3x2y2 = −∂y(x2y3), that is, iff y2 = x2 and x2y2 = 0. The first condition is the two
diagonals y = ±x and the second the two axes x = 0 and y = 0. The intersection of these is the origin, which
is therefore the only point where the function is complex-differentiable.

3. u = x + y2 and v = −2xy, so that the CR conditions are satisfied iff ∂x(x + y2) = 1 = −2x = ∂y(−2xy)
and ∂x(−2xy) = −2y = −2y = −∂y(x + y2). The latter is always satisfied, so that the function is complex-
differentiable on the line x = −1/2, where its derivative is f ′ = ∂x(u+ iv) = 1− 2iy.

4. f(x + iy) = cos(i(x + iy)) is an elementary function of z, namely, f(z) = cos(iz) = cosh(z) that is everywhere
differentiable (it is entire) with derivative f ′ = sinh(z).

5. The function is directly expressed in terms of holomorphic functions, so that, except at z = 0 where it is not
defined, it is everywhere differentiable with derivative f ′ = ez(z − 1)/z2.
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V. COMPLEX INTEGRATION

• The function z2 + 1 is holomorphic on a simply connected domain, therefore it is zero regardless of the path.

• Written as
∮
C1,2

dz
(z−1)(z+1) , we see that the function has two poles, in ±1. We use Cauchy’s integral formula

to 0th order to evaluate the contour integral on a circle centered on each pole, and find:
∮
|z−1|=1

dz
(z−1)(z+1) =

2iπ 1
z+1

∣∣
z=1

= iπ and
∮
|z−(−1)|=1

dz
(z−1)(z+1) = 2iπ 1

z−1
∣∣
z=−1 = −iπ. The only difference between the two paths

is that one changes the sense in the contour of integration around 1, therefore:∮
C1

dz

(z − 1)(z + 1)
= iπ + (−iπ) = 0 while

∮
C2

dz

(z − 1)(z + 1)
= −iπ + (−iπ) = −2iπ.

• The function only has a pole in 1, where the contours on both paths go in opposite directions. Therefore, the

results will be of opposite sign. We use Cauchy’s integral formula to first order to compute
∮
C1

cosh(z)
(z−1)2 dz =

2iπ[cosh(z)]′
∣∣
z=1

= 2iπ sinh(1).

• The pole is at iπ/4 which is within the unit circle, therefore,
∮
C3

ez

z−iπ/4 dz = 2iπeiπ/4 = −2πe−iπ/4.

• This integral could be painful to compute explicitly (x is not holomorphic therefore we cannot use Cauchy
integration). We can use the complex Green theorem, however, which, for f = z∗, gives

∮
C z
∗ dz = 2iA with A

the area enclosed by C. Now
∮
z dz +

∮
z∗ dz = 2

∮
x dz with the first integral zero, and therefore:∮

C4

x

i
dz = 1 +

π

2
≈ 2.57 (8)

by summing the area of the two triangles (together forming a square of unit side) and half a circle of radius
r = 1, i.e., πr2/2.
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