Exercises to be handed in on 2 April 2013. Please label your work with your name and surnames as well as DNI.

- 1. Take the series $\sum_{n=1}^{\infty} z/n$. Visualise on the complex plane the *n*-th partial sums, s_n , for the case z = 2(1+i)/3, by connecting each pair s_n , s_{n+1} with a segment.
- 2. Find the radius of convergence of the following series:
 - (a) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$
 - (c)

(b)

$$\sum_{n=0}^{\infty} z^{n!}$$

 $\sum_{n=0}^{\infty} n! z^n$

3. Given the series $\sum_{n=0}^{\infty} a_n z^n$ with radius of convergence R, find the radius of convergence of the following series:

$$\sum_{n=0}^{\infty} a_n^2 z^n$$

4. Study the convergence and then find the sum of the following series:

$$\sum_{n=0}^{\infty} \frac{(z+i)^n}{(1+i)^{n+1}}$$

5. Find the power series that has as sum the following function

$$f(z) = \frac{1}{z^2 + z + 1}$$

Note that $(1 - z^3) = (1 - z)(z^2 + z + 1)$. Also find the radius of convergence.

- 6. Suppose that the power series $\sum_{n=0}^{\infty} a_n z^n$ has a recurring sequence of coefficients $a_n = a_{n+k}$, with k a fixed positive integer. Prove that the series converges for |z| < 1 to a rational function p(z)/q(z), p(z) and q(z) being two polynomials, and that the roots of q(z) are all on the unit circle.
- 7. Given

$$\frac{1}{1-z-z^2} = \sum_{n=0}^{\infty} F_n z^n$$

show that: $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$.