Exercises to be handed in on 2 April 2013. Please label your work with your name and surnames as well as DNI.

1. Take the series $\sum_{n=1}^{\infty} z / n$. Visualise on the complex plane the n-th partial sums, s_{n}, for the case $z=$ $2(1+i) / 3$, by connecting each pair s_{n}, s_{n+1} with a segment.
2. Find the radius of convergence of the following series:
(a)

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

(b)

$$
\sum_{n=0}^{\infty} n!z^{n}
$$

(c)

$$
\sum_{n=0}^{\infty} z^{n!}
$$

3. Given the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ with radius of convergence R, find the radius of convergence of the following series:

$$
\sum_{n=0}^{\infty} a_{n}^{2} z^{n}
$$

4. Study the convergence and then find the sum of the following series:

$$
\sum_{n=0}^{\infty} \frac{(z+i)^{n}}{(1+i)^{n+1}}
$$

5. Find the power series that has as sum the following function

$$
f(z)=\frac{1}{z^{2}+z+1}
$$

Note that $\left(1-z^{3}\right)=(1-z)\left(z^{2}+z+1\right)$. Also find the radius of convergence.
6. Suppose that the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ has a recurring sequence of coefficients $a_{n}=a_{n+k}$, with k a fixed positive integer. Prove that the series converges for $|z|<1$ to a rational function $p(z) / q(z), p(z)$ and $q(z)$ being two polynomials, and that the roots of $q(z)$ are all on the unit circle.
7. Given

$$
\frac{1}{1-z-z^{2}}=\sum_{n=0}^{\infty} F_{n} z^{n}
$$

show that: $F_{0}=F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$.

