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Uniform convergence is convergence of functions as a whole (∀ε > 0)(∃N ∈ N)(∀z ∈ D)(n > N)⇒ (|Sn(z)−f(z)| <
ε), rather than pointwise. The concept is important because several properties of the functions Sn, such as continuity
and Riemann integrability, are transferred to the limit f if the convergence is uniform.

The Weierstrass M -test states that if a series
∑

k uk(z) is such that |uk(z)| ≤ Mk for all z ∈ D, then if
∑

kMk

converges, therefore
∑

k uk(z) converges uniformly. Let Sk a series of functions that are continuous on a domain D
that contains the contour C. If Sk converges uniformly to f on D, then:

1. f is continuous on D.

2. limk→∞
∫
C Sk(z) dz =

∫
C f(z) dz

that is to say, we can interchange the integral sign and the limit.

A. Suggested readings

• A history of analysis, J. Hans Niels, AMS Bookstore (2003). Sec. “6.7 The Foundation of Analysis in the 19th
Century: Weierstrass”.

B. Exercises

1. Prove the uniform convergence of
∑∞

k=1 z
k/k2 on {z : |z| ≤ 1}.

2. Where do these series converge uniformly?
∑∞

n=0

(
n+2
7n−3

)n
zn;

∑∞
n=0(z + i)2n/3n and

∑∞
n=2

(
n
2

)
(4z + 2i)n.

C. Problems

1. Assume fn and gn converging uniformly to f and g, respectively. Show that fn + gn converges uniformly to
f + g. Show that this is not compulsorily the case for fngn.

2. Riemann’s ζ function is defined as ζ(z) =
∑∞

n=1 n
−z. Show that ζ converges uniformly on A = {z : Re(z) ≥ 2}.

D. Solutions to the Partial Examination

Complex Calculus

1. Since i2 = −1, 1 + i− i2 = 2 + i.
2. The sum reads 1−z+z2 which at z = −i is 1+i+(−i)2 =

i.
3. The series

∑∞
k=0 z

k converges to 1/(1−z) [If we forgot it,

we can find it again: let us call SN =
∑N
k=0 z

k the partial sum,

then decomposing it as SN+1 =
∑N
k=0 z

k + zN+1 on the one

hand and and SN+1 = 1 +
∑N+1
k=1 z

k = 1 + zSN on the other

hand, we find equating both terms SN +zN+1 = 1+zSN , i.e.,
SN = (1 − zN+1)/(1 − z) which, incidentally, is also a result
to know; the one we look for follow by taking the limit N →
∞]. Therefore the series

∑∞
k=0(−z)k evaluates to 1/(1 + z)

which, for z = i/2 that is within the circle of convergence, is
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1/(1 + i/2) = 2/(2 + i) = 2(2− i)/|2 + i| = (4− 2i)/5.

Complex Plane

One could compute |zk−zl| for all k ≤ l and find which pairs
provide the largest (question 4) and the smallest (question 5)
distances.

By plotting the points on the complex plane, however:
4. It is obvious that the farthest points are z0 and z1.
5. The closest points could be z0 and z2 or z1 and z3, for

which one can compute |z0−z2| = |i−eiπ/3| and, which is eas-
ier by noting that they are aligned with the origin, |z1−z3| =
|e−iπ/4(1 −

√
2)| =

√
2 − 1. The numerical evaluation of

|i − eiπ/3| can be made in several ways, e.g., by Pythago-

ras theorem, which yields
√

2
√

1− sin(π/3) =
√

2−
√

3. To
compare these numbers, we can compare their square since
the square root is monotonous (hence a > b→

√
a >
√
b) and
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it is easy to estimate with pen and paper only that (
√

2−1)2 =
3− 2

√
2 ≈ 3− 2× 1.41 ≈ 0.18 and 2−

√
3 ≈ 2− 1.73 ≈ 0.27.

This shows that z1 and z3 are the points closer to each others
from the proposed set. The difference is ≈ 0.1 and should
also be identifiable with a ruler.

6. The area is non zero and is clearly not complex, therefore
the area is one of the three remaining expressions that can be
evaluated graphically. We can also compute it by summing
the area of sub-polygons, e.g., by decomposing into trapezoids
delimited by the upper and lower points. Their area is easily
calculated as the average of the heights times the basis, which,
in the complex plane, yields:

A =

N−1∑
i

=(zn+1 + zn)<(zn+1 − zn)

2
. (1)

On the given points, the result comes out as (
√

3+2−
√

2)/4 ≈
0.58.

I. COMPLEX FUNCTIONS

7. Since exp(z) = exp(x + iy) = exp(x) exp(iy) =
exp(x)(cos(y) + i sin(y)), the real part is ex cos(y).

8. Since ln(z) = ln(reiθ) = ln(r) + iθ, the imaginary part
is θ, that is linked to the cartesian coordinates through tan θ =
y/x hence the imaginary part is arctan(y/x).

9. We compute the Cauchy–Riemann equations explicitly
for u(x, y) = 2x − y and v(x, y) = ax + by and find 2 = b
and a = 1.

II. CONFORMAL MAPPING (3PTS)

10. We want z such that (z−i)/(z+i) = i, i.e., iz−1 = z−i
which, factorizing z, yields z(i − 1) = 1 − i, that is, z = −1.
We could as well have tried all the proposed solutions.

11. We know that the Möbius transform maps lines (and
circles) into lines and circles. Since 0→ −1, 1+i→ (1−2i)/5
and 1−i→ 1−2i, which are not aligned, the image of θ = π/4
will be that of a circle, i.e., of the type:∣∣∣∣z − iz + i

−A
∣∣∣∣ = R2 , (2)

with A = x0 + iy0 the center and R the radius. We have to
determine the three values of the real numbers x0, y0 and R,
which we can do by solving the set of equations for the points
we have just evaluated:

(x0 + 1)2 + y20 = R2

(x0 − 1)2 + (y0 − 2)2 = R2

(x0 − 1/5)2 + (y0 + 2/5)2 = R2

(3)

with solution x0 = 0, y0 = 1 and R =
√

2, hence the image of
the line with slope π/4 is the circle of centre i and radius

√
2.

12. The Möbius transform is a conformal mapping, i.e., it
preserves angles, so that we do not need to actually compute
the image of the curves but work out their angle directly.
The images will intersect with the same angle. The angle
between the line and the circle is given by the angle between
the line and the tangent to the circle at the intersecting point.
By elementary trigonometry, we find that θ = π/2 − π/3
(where π/2 is the angle between the radius of the circle and
the tangent to the circle, and π/3 is the angle between the
radius and the line y =

√
3/2). The intersecting angle is

therefore π/6 (or its complementary to π depending on the
definition of the intersection).

III. COMPLEX INTEGRATION

13. The function 1/(z − i) is holomorphic on C and every-
where in the enclosed domain (since the pole is at i) which is
outside the unit circle of center −i. Therefore the integral is
zero.

14. The integral over C and along the segment [−1, 1] on
the real axis is of an holomorphic funtion over a closed tra-
jectory and is therefore zero. The integral over C is therefore
minus that over [−1, 1], which can be computed by conven-
tional methods:∫ 1

−1

exp(2z) dz =
1

2
e2z
∣∣∣1
−1

=
e2 − e−2

2
= sinh(2) .

Here we have used that exp(z)2 is exp(2z).
15. There is the pole at z = 1 in the domain circled by C.

Therefore we write the integral as:∮
C

4z3 + 3z2 + 2z + 1

z + 1

1

z − 1
dz (4)

where the first term f(z) is holomorphic on C and the domain
it contains. By Cauchy’s integral formula for n = 1, we find
2iπf(1) =

∮
C f(z)dz/(z − 1) = 10iπ.
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