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We study various techniques to characterize the quantum
states of a strongly dissipative system, namely, the an-
harmonic oscillator. One cannot directly access the quan-
tum states themselves but only transitions between them.
Various methods bring various advantages and inconve-
nients. We compare several observables under coherent
and incoherent excitation.

Incoherent excitation leads to huge broadening while co-
herent excitation quickly dresses the system at the ener-
gies required to access the excited states. Less perturba-
tive methods such as four wave mixing appear to be su-
perior but are, by construction, only usable for the lowest
rungs.

1 Introduction The physics of light-matter coupling
in nanostructures [1] is a privileged arena where to real-
ize and study fundamental quantum physics, with the hope
of applications and large scale integration. Because semi-
conductors are typically noisy systems with large decay
rates, a dissipative description is often necessary. The inter-
play of quantum dynamics and decay leads to complicated
interferences between the quantum states [2], which can
only be accessed through transitions between poorly de-
fined eigenenergies, making it often problematic to probe
the structure of such systems.

Here, we consider the quantum dynamics of a dissi-
pative anharmonic oscillator, arguably the simplest non-
trivial system of this type. The anharmonic system repre-
sents a fundamental theoretical problem by itself, with ap-
plications in different fields of quantum optics, solid state
physics, molecular and atomic physics [1-3]. It is, for in-
stance, a popular model to describe interacting polaritons
in microcavities [4,5]. Advantages and disadvantages of
various techniques to probe this quantum optical system
are presented; we undergo a comprehensive analysis of the
anharmonic oscillator, considering coherent versus inco-
herent excitation, as well as a more elaborate technique —
Four Wave Mixing (FWM) — recently developed to access
dressed states in the Jaynes–Cummings model [11,12].

We study the Hamiltonian (with h̄ = 1 throughout the
paper)

H = ωaa
†a+ V a†2a2 (1)

ωa is the intrinsic mode frequency, a and a† the boson
annihilation and creation operators and V is the anhar-
monic (quadratic) term. Diagonalizing H , which can be
done exactly, leads to the transition frequencies ωn =
En − En−1 = ωa + 2V (n − 1), in terms of the eigen-
frequencies of the system:

En = ωan+ V (n− 1)n (2)

We will consider ωa = 0 as the reference energy without
loss of generality. Figure 1 shows the energy levels of the
system. To compute all the quantities of interest, we use
the Lindblad master equation formalism

dρ

dt
= Lρ = −i[H, ρ] + γ

2
Laρ (3)

where Laρ = 2aρa† − a†aρ − ρa†a. Dissipation with a
decay rate of γ is included.

An important observable in our study is the photolumi-
nescence (PL) spectrum. In the steady state (taken at t = 0)
it reads,

S(ω) =
1

πnSS
a

∫ ∞

0

eiωτ 〈a†(0)a(τ)〉dτ , (4)
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Figure 1 Energy level diagram of the first three transitions of the
anharmonic oscillator. A 3-photon resonance is depicted where 3
photons from a probe laser, with frequency ωL, hit the third rung.
The dashed arrows indicate dissipation in the system with loss
rate γ.

in terms of the two-time correlator 〈a†(0)a(τ)〉, which can
be obtained through the quantum regression theorem.

Figure 2 Density plot of the PL spectrum in the steady state un-
der incoherent excitation as a function of frequency ω and anhar-
monic parameter V . Increasing the parameter V yields to larger
transition frequencies. The different lines correspond to different
rungs of the anharmonic ladder.

2 Incoherent excitation Typical examples of inco-
herent pumping in semiconductors are continous wave ex-
citation or electrical injection in the wetting layer. Both
provide an incoherent and continuous income of excitation.
It is described, as noted before, through the pumping Lind-
blad term P

2 (2a
†ρa−aa†ρ−ρaa†) in the dissipative master

equation.
We introduce the number state |n〉 with n excitations

in the system and calculate the density matrix elements

d

dt
〈n|ρ|m〉 = 〈n|

(
−i[H, ρ] + γ

2
Laρ+

P

2
La†ρ

)
|m〉

(5)

in this basis. The probability of having n excitations in the
system, p(n) = 〈n|ρ|n〉, can be obtained from Eq. (5).

Figure 3 PL spectrum in the steady state under incoherent exci-
tation in units of V (a cut of Fig. 2 at V = 1). Transitions from
the first three rungs are visible and allow to identify properly the
dressed states that gave rise to them.

Its equation reduces, in the steady state under incoherent
pumping, to:

d

dt
p(n) = 0 = −[nγ + (n+ 1)P ]p(n)

+ nPp(n− 1) + (n+ 1)γp(n+ 1) . (6)

The solution is a thermal field independently of the anhar-
monicity V (which should always remain V � ωa):

p(n) =

(
P

γ

)n
γ − P

γ
. (7)

The corresponding average population of the cavity reads

na = 〈a†a〉 =
∑
n

np(n) =
P

γ − P
, (8)

and the single time, second order correlation function

g(2)(0) =

∑
n n(n− 1)p(n)

n2
a

= 2 . (9)

Because na and g(2)(0) are independent of V , we can not
extract any information about the system from these quan-
tities. One has to look into spectral observables, related to
the eigenenergies, in order to understand the impact of the
anharmonicity under incoherent excitation. The change in
the PL spectrum when varying V is apparent in the density
plot of Fig. 2. In Fig. 3, we make a cut of this plot at V = 1
where one can clearly identify the transitions from the first
three rungs.

3 Coherent excitation To excite the system coher-
ently, a resonant continous wave (ΩeiωLt + h.c.) is used.
This enters the dynamics in the Hamiltonian as

H = ωaa
†a+ V a2†a2 +Ω(aeiωLt + a†e−iωLt) . (10)

To get rid of the explicit time dependence, we carry out a
unitary transformation into the rotating frame of the laser:

H̃ = U†HU − iU †
dU

dt
, (11)
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with U = e−iωLa†at. The operators a and a† evolve under
the operator U as ã(t) = eiωLta and ã†(t) = e−iωLta†,
respectively. Inserting this into the Hamiltonian (10) gives:

H̃ = Δa†a+Ω(a+ a†) , (12)

where we have defined the detuning to the laser frequency
Δ = ω − ωL.

Figure 4 PL spectrum in the steady state under coherent excita-
tion resonant with the first rung (Δ = 0). In (a) we have a very
low intensity of the laser and thus get only 1 peak at the laser fre-
quency ω = ωL. In (b) we increase the intensity and a Mollow
triplet arises.

Figure 5 PL spectrum in the steady state under coherent excita-
tion in the two photon absorption regime (that is, resonant with
the second rung, 2ωL = ω1 + ω2, or Δ = V ). At small pump-
ing power (Ω < 0.3V ) the transition from the second to the first
rung is visible (blue curve, at ω = 0, 2). But for high excitation
power dressed states gets created and the features intrinsic to the
systems are more difficult to extract.

3.1 PL spectrum Let us start by probing the system
with a coherent laser resonant with the first rung, that is
Δ = 0, and look at the PL spectrum. Figure 4 shows the
dressing of this rung by the laser, that manifests as a Mol-
low triplet. The side peaks lie exactly at the “Mollow” fre-
quencies ωMollow = ±√(2Ω)2 − (γ4 )

2. Excitation at fre-
quency ωL = V yields a two photon absorption, and for
high excitation power also dressed states appear (Fig. 5).

In the simplest case of the harmonic oscillator, the dif-
ferent transitions cannot be resolved in the PL spectrum.
The quantized nature of the quantum oscillator is com-
pletely washed out due to the driving of the laser. To anal-
yse this phenomenon theoretically, we study first the time
dependent physical spectrum. Following the definition of

Eberly and Wódkiewicz [10], the time dependent spectrum
can be written as:

S(t, ω) =

∫∫ t

0

e−(Γ
2 −iω(t−t1)e−(Γ

2 +iω(t−t2)

× 〈a†(t1)a(t2)〉dt1dt2 . (13)

Neglecting the linewidth of the detector, Γ = 0, perform-
ing a variable transformation, and using 〈a†(t2)a(t1)〉 =
〈a†(t1)a(t2)〉∗, we obtain the normalized physical spec-
trum:

S(t, ω) =
2� ∫ t

0
dT

∫ t−T

0
eiωτ 〈a†(T )a(T + τ)〉dτ∫ t

0
〈a†(T )a(T )〉dT

.

(14)

Next, we consider the evolution of the physical spectrum
after the laser has turned on at t = 0. Figure 6 shows the
physical spectrum at two different times. One clearly sees
two peaks, at ωL and ωa = 0, corresponding to the intrin-
sic frequencies of two interacting elements, laser and har-
monic mode. In the limit t→∞ the second peak vanishes
and the time dependent spectrum converges to the common
laser-type delta function.

Figure 6 Time dependent physical spectrum of the harmonic os-
cillator. At short times, two peaks (at the laser frequency and at
the transition frequency) are clearly visible. After some time, the
laser drives the system to its own (laser) frequency and thus the
transition frequency is washed out from the spectra.

3.2 Population and higher order correlation func-
tions In the steady state, the population na = 〈a†a〉
of the anharmonic mode is a meaningful quantity to ob-
serve the multi photon absorption at frequencies En

n =
ωa + V (n − 1), see Fig. 7. Increasing the laser intensity,
higher rungs of the anharmonic ladder get probed (Fig. 8),
though we learned from the discussion that the intensity
should not be so high that dressed states appear in the sys-
tem.
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Figure 7 Population of the cavity as a function of laser frequency
ωL for two different laser intensities. The peaks correspond to
multi photon absorption. If the laser intensity increases, higher
rungs of the ladder gets probed.

Figure 8 Population na as a function of laser intensity for ωL =
ωa. The population increases monotoneously. This behaviour is
qualitatively similar for different values of ωL

The second order correlation function g(2) is typically
used to describe bunching or antibunching of photons. In
this case, we must compute g(2)(0) numerically, in contrast
to incoherent pumping, because coherent pumping leads to
a large number of off-diagonal elements in the density op-
erator. The second order correlation function can be gener-
alized to nth order:

g(n)(0) =
〈a†nan〉
nn
a

. (15)

Figure 9(a) shows strong features in the correlation func-
tions with coherent excitation at the nth photon resonances.
As shown with the population, higher rung get probed by
increasing the laser intensity, but using higher order corre-
lation functions than g(2), features of higher rungs can be

displayed even with the same laser intensity (Fig. 9(a)).
In addition to the previous chapter, we also can find the
dressing of the system by the laser in this case, see Fig.
10. For high laser frequencies we see the expected photon
bunching, but below a treshold the peaks split up due to
dressed states and we get antibunching.

Figure 9 (a) Second and fourth order correlation functions as
a function of laser frequency. g(4) displays information about
higher rungs for the same laser intensity. (b) Second and fourth
order differential correlation functions as a function of laser fre-
quency. Both graphs show similar features. C(4) is scaled by a
factor of 1/8000. The laser intensity is Ω/V = 0.78

Another quantity similar to g(n) is the differential correla-
tion function

C(n) = 〈a†nan〉 − 〈a†a〉n (16)
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which is popular in describing photon statistics [9]. In our
case of an anharmonic oscillator there is no noticeable dif-
ference between the different orders of the C(n), which is
shown in Fig. 9(b).
But the differential correlation functions also nicely show
the crossing from antibunching to bunched photons, as it
is depicted in Figure 11. This is the same behaviour like in
Fig. 10.

Figure 10 Logarithmic plot of correlation functions from second
to fifth order with Ω = 0.8V .For small ωL the photons are anti-
bunched, but get bunched for high enough laser frequency. At the
threshold (ωL = 4V ), g(3), g(4) and g(5) show antibunching, but
g(2) already shows bunching.

Figure 11 Differential correlation functions from second to fifth
order with Ω = 0.8V . They show a similar behaviour than the
nth order correlation functions.

3.3 Four wave mixing (FWM) Four wave mixing is a
powerful method in nonlinear (quantum) optics to observe
third-order nonlinear response. The method has recently
been proposed to investigate Jaynes–Cummings nonlinear-
ities [11]. Inspired by this work, we also use here the de-
generate configuration, i.e., the signal is generated via two

pulses with time delay τ (Fig. 12 (a)). Following the pro-
cedure of Ref. [11], the pulses are described by adding to
the Hamiltonian

HFWM(t) = E1δ(t+ τ)eiω1ta† + E2δ(t)e
iω2ta† + h.c. ,

(17)

where E1, E2 are the coupling strengths with the two
pulses. A first photon at frequency ω1 at time −τ yields
to a first order polarization and two photons, each with the
frequency ω2, at time 0 produce a third order response:

P (t, τ) = Tr(ρ(3)(t, τ)a) . (18)

With the third order term of the density matrix

ρ(3)(t, τ) ∝ e−ilt[a†, [a†, e−iLτ [a, ρ(0)]]] . (19)

Performing the three commutators in Eq. (19) leads to
23 = 8 terms. The term e−iLt(a†e−iLτρ(0)aa†), for ex-
ample, is visualized in a quantum optics Feynman diagram
(Fig. 12(b)). To evaluate Eq. (19), we need to expand the
creation and annihilation operators in the photon number
basis:

a = |0〉〈1|+
√
2|1〉〈2|+ ... (20)

a† = |1〉〈0|+
√
2|2〉〈1|+ ... (21)

After the first pulse, a linear polarization is generated that
can be described by a first order correction to the density
matrix,

ρ(1)(−τ) = [a, ρ(0)] = −|0〉〈1| . (22)

Then it evolves according to the master equation

ρ(1)(0) = e−iLτρ(1)(−τ) . (23)

The second pulse produces a third order polarization

ρ(3)(0) = [a†, [a†, ρ(0)]] =
√
2ρ01|2〉〈1| . (24)

The further time evolution of ρ(3)(t, τ) is again described
by the master equation. We finally get:

P (t, τ) = Tr(ρ(3)(t, τ)a) = ρ10(t, τ) +
√
2ρ21(t, τ).

(25)

In the following we set τ = 0. From the FWM polariza-
tion in the time domain we can extract interesting features
about the system, see Fig. (14). The slope of the FWM am-
plitude (in Log-scale) is different for short and long times
evidencing the dynamics of the second and then the first
rungs of the anharmonic ladder. At longer times the signal
is only dominated by the first rung due to a higher dissipa-
tion rate of the second manifold.
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Figure 12 (a) Scheme of the temporal sequence of two pulses at
times t = −τ and t = 0. (b) One example out of the possible 8
Feynman diagrams in the FWM. Left and right lines correspond
to operators on the right and left hand side, respectively, of the
initial density matrix ρ(0). The outgoing arrow at time −τ on the
right corresponds to a annihilation of a photon and at time t = 0
and yields to a first order polarization. Two photons (ω2, ω3) at
time 0 produce the third order response. Between the pulses, the
system evolves freely according to the master equation.

Finally, we want to compare the FWM spectrum with
the common PL spectrum under coherent and incoherent
excitation. To do that, we compute

SFWM(T, ω) =

∫ ∞

T

P (t, τ)eiωtdt , (26)

where the time integration starts with a time lag T . Fig-
ure 13 shows the FWM spectrum. The intensity of the
peaks strongly depends on the time lag T . As already seen
in the time domain, the intensity of the second rung de-
creases for a higher time lag T . By construction of the third
order nonlinear response, the FWM can only show the first
two rungs (Fig. 13) of the anharmonic ladder. In order to
investigate higher manifolds, one needs to perform six or
eight wave mixing.

4 Conclusions We considered various possibilities
to probe the quantum states of a dissipative anharmonic
oscillator, with coherent and incoherent excitation, as well
as four wave mixing. Under incoherent excitation, tran-
sitions between many rungs of the ladder are visible in
good enough systems (where quantum dynamics domi-
nates neatly the dissipative one) but correlation functions
(g(2)(0) = 2, that is, that of thermal light) and the popula-
tion do not betray any of the underlying quantum structure.
These quantities become useful for that purpose under co-
herent excitation. The higher order correlation functions

Figure 13 FWM spectrum at zero delay when varying the fil-
tered time. It shows first and second rung transitions. First rung
increases with higher time-lag

Figure 14 Amplitude of the FWM polarization at zero delay as a
function of time. It shows second and then first rung dynamics.

(g(2), g(3), . . . ) maps the system structure quite well,
and better than the differential correlation functions C(n).
High intensities of the laser to make such features more
pronounced yield instead to dressing by the laser and thus
the intrinsic features of the quantum anharmonic oscilla-
tor get lost. Finally, we investigated the four wave mixing
method, where we have a coherent probe of the polariza-
tion, but this method is limited to the bottom of the ladder
(up to second rung).
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