
012K1996_KP_LE_A_en.doc

1

DIGITAL TYPOGRAPHY

Donald Ervin Knuth

 I have been in love with books ever since I can remember. At first, my

parents read to me a lot―an unusual practice in America at the time, because the

prevailing “wisdom” of the 1940s was that a child who is exposed to intellectual things

at an early age will be bored later when entering school. Thanks to my parents, I

became at age four the youngest member of the Book Worm Club at the Milwaukee

Public Library [photo 1].

 That early experience with books is probably responsible for the fact that I

don‟t remember ever being bored, throughout my education. In fact, I think

contemporary society is all mixed up in its concept of “boredom”: People often say to

each other that they are bored, but to me this is almost a shocking, shameful admission.

Why should it be somebody else‟s duty to entertain us? People who can‟t find anything

of interest in what they are doing, who constantly need external sources of stimulation

and amusement, are missing most of life‟s pleasures.

 With me it has always been the opposite: I tend to err in the other direction. I

often get so interested in Chapter 1 of the books that I‟m reading or studying, I don‟t

have much time to read the final chapters.

 Once, when I was five years old, my parents let me take the streetcar to the

downtown library by myself, and I was absolutely fascinated by the children‟s books.

When I didn‟t come home on time, my parents were worried and phoned the library.

One of the night staff went looking and found me in the stacks, reading happily―I had

no idea that the library was closed and that everyone else had gone home! Even today

my wife knows I go to the library, I‟ll probably come home late.

In fact, not only have I always loved books, I‟ve also been in love with the individual

letters in books. Here‟s a page from the first ABC alphabet book that I had when I was

little [photo 2]. Curiously, I marked each serif in the letters with a little x, and I

counted the serifs: The letter K has 7 serifs. The letter P [photo 3] has 4; the letter O

[photo 4] has none.

 From this you can see that I like numbers as well as letters. By the time I

became a professor at Stanford I had learned that my main talents were associated with

012K1996_KP_LE_A_en.doc

2

computer programming, and I had begun to write books of my own. My first book,

Volume 1 of The Art of Computer Programming, came out in 1968, and Volume 2 was

ready a year later [photo 5].

 I was excited to see these volumes not only because I was pleased with the

information they contained, but also because of the beautiful typography and layout.

These books were produced with the best, time-tested methods known for the

presentation of technical material. They appeared in the same classic style that had

been used in my favorite college textbooks. So it was a pleasure to look at these

volumes as well as to read them.

 They were produced with 19th-century technology called Monotype,

involving two kinds of machines. First, there was a complex pneumatic keyboard with

284 keys [photo 6]. This machine produced a punched paper tape something like a

player-piano roll; you can see this tape at the top of the picture. The paper tape was

then used to control at special casting machine [photo 7] that produced individual

pieces of type from hot molten lead.

 The process of typesetting mathematics with such machines was very

complicated [photo 8]. First, a specially trained typist would key in the formula by

making two pases: One for the letters and symbols on the main line, and their

superscripts (the characters„｜ det(a)｜≦a
2‟

 high-lighted in yellow); a second pass

was made for the subscripts (the characters „ij‟ in this example). The keyboard operator

had to know the width of each character so that he could leave just enough space to

make the subscripts line up properly. After the formula had been cast into metal,

another specially trained technician inserted the remaining large symbols (the big

parentheses and symbols like Π and Σ) by hand. Only a few dozen people in the

world knew how to typeset mathematical formulas with Monotype. I once had the

privilege and pleasure of meeting Eric, the compositor who did the keyboarding for

Volumes 1 and 2; I was surprised to discover that he spoke with a very strong

London-Cockney accent, although he lived in America and was responsible for some

of the world‟s most advanced books in mathematics.

 Books on computer science added a new complication to the difficulties that

printers already faced in mathematical typesetting: Computer scientist need to use a

special style of type called typewriter type, in order to represent the textual material

that machines deal with. For example [photo 9], here‟s another portion of a page from

012K1996_KP_LE_A_en.doc

3

Volume 2, part of a computer program. I needed to combine typewriter type like the

word „OFLO‟ with the ordinary style of letters. At first I was told that an extra

alphabet would be impossible with Monotype, because traditional math formulas were

already stretching Monotype technology to its limits. But later, Eric and his supervisor

figured out how to do it. Notice that I needed a new, squarish looking letter O in the

typewriter style, in order to make a clean distinction between O (oh) and 0 (zero).

 New machines based on photography began to replace hot-lead machines

like the Monotype in the 1960s. The new machines created pages by exposing a

photographic plate, one letter at a time, using an ingenious combination of rotating

disks and lenses to put each character in its proper position. Shortly after Volume 3 of

The Art of Computer Programming came out in 1973, my publisher sold its Monotype

machine and Eric had to find another job. New printings of Volume 1 and Volume 3

were published in 1975, correcting errors that readers had found in the earlier

printings; these corrections were typeset in Europe, where Monotype technology still

survived.

 I had also prepared a second edition of Volume 2, which required typesetting

that entire book all over again. My publishers found that it was too expensive in 1976

to produce a book the way it had been done in 1969. Moreover, the style of type that

had been used in the original books was not available on photo-optical typesetting

machines. I flew from California to Massachusetts for a crisis meeting. The publishers

agreed that quality typography was of the utmost importance; and in the next months

they tried hard to obtain new fonts that would match the old ones.

 But the results were very disappointing. For example [photo 10], here‟s some

of the type from the second, “tuned up” version of their new fonts. These were much

improved from the first attempt, but still unacceptable. The “N” in “NOAM” was

tipped; the “ff” in “effect” was much too dark; the letters “ip” in “multiple” were too

close together; and so on.

 I didn‟t know what to do. I had spent 15 years writing those books, but if

they were going to look awful I didn‟t want to write any more. How could I be proud

of such a product?

 A possible way out of this dilemma presented itself a few months later, when

I learned about another radical change in printing technology. The newest machines

made images on film by digital instead of analog means―something like the

012K1996_KP_LE_A_en.doc

4

difference between television and real movies. The shapes of letters were now made

from tiny little dots, based on electronic pulses that were either ON or OFF [photo 11].

Aha! This was something I could understand! It was very simple, like the lights on a

scoreboard at a sports match.

 Metallurgy and hot lead have always been complete mysteries to me; neither

have I understood lenses or mechanical alignment devices. But letters made of little

dots—that‟s computer science! That‟s just bits, binary digits, 0s and 1s! Put a 1 where

you want ink, put a 0 where you don‟t want ink, and you can print a page of a book!

 I had seen digital letterforms before, but only on crude machines. Computer

scientists had been experimenting for many years with a machine called the Xerox

Graphics Printer, which had been invented in England about 1961 but not controlled by

computers until the 70s. This machine made letters out of dots, but the dots weren‟t

very small. There were only about 180 dots per inch, so the letters had lots of jagged

edges. It was fun to play with the Xerox Graphics Printer, but I never expected that

such a machine could produce real books. It seemed too simple, capable only of

making cheap imitations―like the difference between an electronic synthesizer and a

real piano or violin.

 But in February 1977 I saw for the first time the output of a high-quality

digital typesetter, which had more than 1,000 dots per inch... and it looked perfect,

every bit as good as the best metal typography I had ever seen. Suddenly I saw that

dots of ink will form smooth-looking curves if the dots are small enough, by the laws

of physics. And 1 remembered that human eyes are inherently digital, made from

individual rod and cone cells. Therefore I learned for the first time that a digital

typesetting machine was indeed capable of producing books of the highest conceivable

quality.

 Digital cameras don‟t capture all the sharp details of traditional photographs.

High-definition television can‟t match the quality of a Vista Vision movie. But for ink

on paper, a digital approach is as good as any other.

 In other words, the problem of printing beautiful books had changed from a

problem of metallurgy to a problem of optics to a problem of computer science. The

fact that Gutenberg had made books from movable metal type was suddenly only a

500-year-long footnote to history. The new machines have made the old mechanical

approaches essentially irrelevant: The future of typography depends on the people who

012K1996_KP_LE_A_en.doc

5

know the most about creating patterns of 0s and 1s; it depends on mathematicians and

computer scientists.

 When I realized this, I couldn‟t resist tackling the typography problem

myself. I dropped everything else I was doing―I had just finished writing the first 100

pages of Volume 4―and decided to write computer programs that would generate the

patterns of 0s and 1s that my publishers and I needed for the new edition of Volume 2.

 At first I thought it would be easy; I expected that the job could be done in a

few months. In March of 1977 I wrote to my publishers that I thought I would have

first proofs ready in July. Boy, was I wrong! All my life I have underestimated the

difficulty of the project I‟ve embarked on, but this was a new personal record for being

too optimistic.

 In the first place, almost nobody else in computer science was doing this

kind of work, so it was difficult to get financial support. The typesetting machine was

very expensive, too much for our university budget. Moreover, that machine was

designed to be run 24 hours per day by trained operators; I was just a single individual

with strange mathematical ideas and no experience in the printing industry. Still, I

assumed that if I could get my computer program working, I‟d be able to borrow time

on some digital typesetting machine.

 There also was a chicken-and-egg problem. I couldn‟t set type until I had

fonts of letters and mathematical symbols, but the fonts I needed did not exist in digital

form. And I could not readily design the fonts until I could set type with them. I

needed both things at once. Other fonts had been digitized, but I had resolved to define

the fonts by myself, using purely mathematical formulas under my own control. Then I

could never have to face the problem that another change in technology might upset

the applecart again. With my own computer program controlling all aspects of the 0s

and 1s on the pages, I would be able to define the appearance of my books once and

for all.

 My publishers provided me with original copies of the Monotype images that

had been used to make the first edition of Volume 1 [photo 12]. So I thought it would

be easy to find mathematical formulas to describe the shapes of the letters. I had seen

John Warnock doing similar things at Xerox Research Center, so I asked if I could use

Xerox‟s lab facilities to create my fonts. The answer was yes, but there was a catch:

Xerox insisted on all rights to the use of any fonts that I developed with their

012K1996_KP_LE_A_en.doc

6

equipment. Of course that was their privilege, but such a deal was unacceptable to me:

A mathematical formula should never be “owned” by anybody! Mathematics belongs

to God.

 So I went to Stanford‟s Artificial Intelligence lab, which had a television

camera that I could use to magnify the letters and capture them in digital form.

Unfortunately, the television camera did not give a true picture―the image was

distorted. Even worse, a tiny change in the brightness of the room lights made a

tremendous change in the television images. There was no way I could get consistent

data from one letter to another. With that TV camera my fonts would look much worse

than the fonts I had rejected from the non-digital machine.

 I tried photographing the pages and magnifying them by projecting the

images on the wall of my house, tracing the enlarged outlines with pencil and paper.

But that didn‟t work either.

 Finally, a simple thought struck me. Those letters were designed by people.

If I could understand what those people had in their minds when they were drawing the

letters, then I could program a computer to carry out the same ideas. Instead of merely

copying the form of the letters, my new goal was therefore to copy the intelligence

underlying that form. I decided to learn what type designers knew, and to teach that

knowledge to a computer.

 That train of thought led to my computer system called METAFONT, which

I want to try to show you now. Here is the way I finally desided to create the letter A,

for example, using a computer program. All the key points of the letter are based on a

grid that is displayed here [plate 1], although of course the grid is really invisible.

Based on this grid and the specification of a normal text font, the computer first draws

the main stem stroke [plate 2]. Part of this stroke needs to be erased because it‟s too

thick at the top [plate 3]. Then the left diagonal stroke is added [plate 4], and the

crossbar [plate 5]. It‟s time now to add a serif at the bottom left [plate 6, plate7], and to

erase a little at the bottom [plate 8] so that the serif doesn‟t make the letter too heavy.

A similar serif is drawn at the bottom right [plate 9-plate 11]. This completes the letter

A.

 The same program will draw infinitely many different A‟s if we change the

specifications. For examples, here‟s darker, boldface variant: [plate 12-plate 22]. And

here‟s a small A suitable for fine print [plate 23-plate 33]. Simply shrinking the

012K1996_KP_LE_A_en.doc

7

original A by 50% would not produce such a legible character at a small size; good

typography requires small letters to have subtly different shapes from their larger

cousins.

 Even the typewriter style A can be drawn with same program. This time we

specify that the thick strokes and thin strokes are identical, and the corners of the serifs

are rounded [plate 34-plate 42]. The resulting A went into my first typewriter-style font,

but I learned later that such an A was a bit darker than it should be. To solve the

problem, I moved the two diagonal strokes slightly apart, and cut a “notch” in the

interior so as to open the inside a bit [plate 43-plate 49]. This is the nice

typewriter-style A that I use today. I didn‟t learn such tricks until several years after I

started to study type design.

 Here is an example of the way my first draft fonts looked on the Xerox

Graphics Printer, about one and a half years after I had begun to work on typography

[photo 13]. Two years later, with some financial help from my publishers, my project

was finally able to obtain a high-resolution digital typesetting machine, and I could

print the new edition of Volume 2 [photo 14]. The proofs for that book looked so much

better than the xerographic proofs I had been working with, I thought my goals for

quality typography had finally been reached.

 But when I received the first printed copy of the new Volume 2 in its

familiar binding, and opened the pages, I burned with disappointment. The book did

not look at all as I had hoped. After four years of hard work, I still hadn‟t figured out

how to generate the patterns of 0s and 1s that are demanded by fine printing. The

published second edition didn‟t look much better than the version I had rejected before

starting my typography project.

 Meanwhile I had had the good fortune to meet many of the world‟s leading

type designers. They graciously gave me the instruction and criticism I needed as I

continued to make improvements. After five more years went by, I finally was able to

produce books of which I could feel proud.

 I don‟t want to give the impression that those nine years of work were

nothing but drudgery. (As I said before, I raely seem to get bored.) Font design is in

fact lots of fun, especially when you make mistakes. The computer tends to draw

delightfully creative images that no human being would ever dream up. I call these

“meta-flops.” For example [photo 15], here‟s an ffi ligature combination in which the

012K1996_KP_LE_A_en.doc

8

f at the left reaches all the way over to the dot on the i at the right. And here‟s another

weird ffi [photo 16]: I call it “the ffilling station.”

 In one of my first attempts to do a capital typewriter-style Y, I put the upper

right serif in the wrong place [photo 17]. I swear that I was not thinking of yen when

I did this!

 Does METAFONT work for Japanese characters as well as for Roman

letters? I think it does, but I haven‟t been able to develop a good eye for Asian

letterforms myself. My student John Hobby did some promising experiments together

with Gu Guoan of the Shanghai Printing Company, and I‟d like to give you a taste of

what they did. First they wrote 13 computer programs for basic strokes. For example,

here are two “teardrop” shapes produced by one of their programs [photo 18]. A font

designer specifies the top, the bottom, and the edge of the bulb; the computer does the

rest. Here [photo 19] are some more examples of teardrops, together with variants of

three other basic strokes.

 Hobby and Gu used their stroke routines to design 128 Chinese characters.

And they did it in such a way that you could get three different styles of letters simply

by using three different versions of the 13 basic strokes. Here [photo 20] are five

characters rendered in Song style, Long Song style, and Bold style. And here [photo

21] are examples of the 13 basic strokes in all three styles.

 With the METAFONT system for type design, and the TEX system for

putting letters and symbols into the right positions on a page, anybody who wants to

write a beautiful book can now do so singlehandedly with a reasonable amount of

effort. These systems give an author total control over the patterns of 0s and 1s that are

needed to define the pages. I have made special efforts to ensure that TEX and

METAFONT will give exactly the same results on all computers, and to ensure that

they will give the same results 50 years from today as they do today. Furthermore I

have published all of the details and put all of my programs in the public domain, so

that nobody has to pay for using them. Of course, many people who offer additional

services will charge money for their expertise, but the main point is that a dedicated

author now has the power to prepare books that previously were prohibitively

expensive.

 I can‟t resist showing you samples from some of the books that I‟ve received

in recent years from their authors. Here‟s one from the Czech Republic [photo 22],

012K1996_KP_LE_A_en.doc

9

showing another font done with the METAFONT SYSTEM. Here‟s one from Ethiopia

[photo 23], telling the people of that country how to use the TEX system. Here [photo

24] is part of the Russian translation of my own book on TEX. And here [photo 25] is

the same passage in Japanese translation. By the way, if I had lived in Japan, I‟m sure I

never would have been inclined to invent TEX or MATAFONT, because I wouldn‟t

have felt the need: The standards of typography in this country never declined as they

did in America and Europe. However, I‟m glad to see that TEX is now widely used in

Japanese publishing.

 People have sent me many fine books that probably never have existed

without TEX and METAFONT. My favorite examples are scholarly publications, such

as the interlingual text of an Eskimo language folk tale shown here [photo 26]. Here,

similarly, are some footnotes from a critical edition of a Greek text [photo 27]; another,

in Arabic [photo 28]; another in Sanskrit [photo 29].

 Ever since I began working on TEX in 1977, I‟ve kept a record of all the

errors, large and small, that I found and removed from the program with the help of

volunteers around the world. This list has now grown to 1,276 items. Perhaps TEX has

thereby become one of the most thoroughly checked computer programs ever written.

 I would like to conclude this talk by quoting one of my favorite poems,

written by the Danish sage Piet Hein. He calls it a “grook”—it‟s sort of a Danish

variant of haiku. My wife and I like it so much, we commissioned a British stonecutter

to carve it in slate for the entryway of our house [photo 30]. It goes like this:

 The road to wisdom? Well it‟s plain

 and simple to express:

 Err

 and err

 and err again

 but less

 and less

 and less.

012K1996_KP_LE_A_en.doc

10

012K1996_KP_LE_A_en.doc

11

012K1996_KP_LE_A_en.doc

12

012K1996_KP_LE_A_en.doc

13

012K1996_KP_LE_A_en.doc

14

012K1996_KP_LE_A_en.doc

15

012K1996_KP_LE_A_en.doc

16

012K1996_KP_LE_A_en.doc

17

012K1996_KP_LE_A_en.doc

18

012K1996_KP_LE_A_en.doc

19

