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It is shown theoretically that Bose condensation of spin-degenerated exciton polaritons results in spontane-
ous buildup of the linear polarization in emission spectra of semiconductor microcavities and therefore that
linear polarization is a good order parameter for the polariton Bose condensation under unpolarized pumping.
If spin degeneracy is lifted, an elliptically polarized light is emitted by the polariton condensate. The main axis
of the ellipse rotates in time due to self-induced Larmor precession of the polariton condensate pseudospin. The
polarization decay time is governed by the dephasing induced by the polariton-polariton interaction and is
strongly dependent on the statistics of the condensed state. If the elliptical polarization preexists in the system
as a result of pumping, the lifetime of the linear part of the polarization is also extremely sensitive to the degree
of circular polarization induced in the system by pumping. This decay time can be used to measure the
coherence degree of the condensate as a function of the polarization of the emitted light, as opposed to more
conventional but harder particle counting experiments of the Hanbury Brown-Twiss type.
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I. INTRODUCTION

Exciton polaritons in microcavities1 are promising candi-
dates to display Bose-Einstein condensation �BEC� in a con-
densed matter system at high temperature, owing to their
unique properties borrowing from their constituents: excitons
and photons. From the former they inherit efficient scattering
mechanisms, from the latter a very small effective mass and
macroscopic coherence length; they further allow convenient
probing of the system by simple optical means since cavity
polaritons tunnel through the Bragg mirrors and turn into
photons whose statistics is identical to that of the polaritons
in the condensate. From both, they retain good bosonic be-
havior at low density.

Existing difficulties in experimental demonstration of po-
lariton BEC are essentially linked to the short lifetime of
these particles and the existence of a bottleneck of relaxation
when approaching the ground state where condensation is to
take place.2 In this connection an important issue of debate is
an unarguable experimental evidence that a condensate has
formed in the system. Though the bosonic behavior of po-
laritons is almost unanimously reckoned after reports of
stimulated scattering, narrowing of the photoluminescence
line or superlinear intensity of emission,3–5 for the sake of
BEC, these are hints at best which do not allow any quanti-
tative measurement of its coherence. Much progress was re-
alized by Deng et al.6 who measured the zero time delay
second-order coherence g2�0� of the hypothetical condensate.
This parameter equals 1 for a coherent state—which is the
limiting case for a perfect condensate of noninteracting
particles—and 2 for a thermal state, where particles have no

phase relationship whatsoever. Though this parameter is a
good measure of the coherence degree of a single mode con-
densate, it is difficult in the case of polaritons to measure
experimentally with the standard technique of Hanbury
Brown-Twiss �HBT� counting experiments. The Deng et al.
experiment has not yet been reproduced by other groups and
their positive result, reporting a decrease of g2�0� from 1.8
down to about 1.5 with an increase of pumping, as well as its
accuracy, remains to be confirmed. Moreover, strictly speak-
ing Bose condensation is a phase transition linked with the
spontaneous symmetry breaking of gauge invariance, that is,
with appearance of a well-defined phase in the system, which
cannot be evidenced by HBT experiments. Such a phase
transition manifests itself in the spontaneous appearance of a
nonzero, long living order parameter of the condensate
which can be interpreted as an average complex amplitude of
the field inside the cavity.

On the other hand, while the quantum properties of the
light emitted by a polariton condensate have been addressed
theoretically in a number of publications,7–14 all these works
ignored the polarization of cavity modes. Recent experi-
ments have shown that the energy relaxation of polaritons is
polarization dependent and that spin dynamics in microcavi-
ties is extremely rich and complicated.11,15–17

In this paper we propose a simple experimental method to
evidence the appearance and survival of the order
parameter—that is, of the phase—of a condensate made of
interacting polaritons: We show that spontaneous symmetry
breaking in an ensemble of polaritons manifests itself in a
dramatic change of the linear polarization degree of the light
emitted by the cavity and the lifetime of this polarization
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depends strongly on the nature of the polariton state. Of
course, light emitted by microcavities can have a nonzero
linear polarization degree without Bose condensation: For
instance if the microcavity is excited by a polarized light, the
pump-induced polarization can reappear in the ground state.
We first consider this situation in opposition to the subse-
quent case where the polarization builds up along with the
condensate, being initially zero and thereby providing an or-
der parameter for Bose condensation. In the presence of pre-
existing correlations, the linear polarization of emission does
not require a definite phase relationship between spin-up and
spin-down condensates. For instance, thermal light, with no
phase whatsoever, can be polarized. We shall suppose for
this case that correlations between the two condensates exist
from pumping constraints and thus consider at this stage the
effect of statistics �or second-order coherence� only. Namely,
we shall consider an elliptically polarized resonant pump in
the more general case—which can degenerate to the cases of
linear or circular polarization—that injects in the system cor-
related populations of spin-up and spin-down polaritons. We
assume they retain their correlations while relaxing toward
the ground state, which is the case if the spin-lattice relax-
ation is negligible. Therefore we refer to an experimental
geometry close to that of Ref. 15 where polarized polaritons
were created by resonant pumping at an oblique angle. In the
isotropic microcavity the nonresonant circularly polarized
pumping �as in Ref. 16� does not create correlations between
spin-up and spin-down components of the polariton conden-
sate in the ground state, thus it does not allow for probing of
the polariton statistics by linear polarization measurements
which is the main subject of this paper. We emphasize that in
all cases we consider pulsed excitations, which allow for the
measurement of time-resolved emission of the microcavity
and study the dynamics of the polarization of the polariton
condensate. We demonstrate theoretically that the linear po-
larization degree of the light emitted by the cavity and espe-
cially its lifetime depend sensibly on the statistics of the
polariton state, and therefore on g2�0�. Again, it does not
depend on the off-diagonal elements of the density matrix, so
that a pure coherent state with a well-defined phase on the
one hand, and a so-called randomly phased coherent state
with same statistics �Poissonian� but no phase on the other
hand, will display the same linear polarization.

The phase comes into play when the two fractions of the
condensate build up independently, which allows the charac-
terization of the condensation beyond merely particle num-
ber statistics. The observation of such an order parameter is
difficult if the measurements are performed on a purely cir-
cularly polarized state. On the other hand, if two spin-
polarized condensates coexist without a priori correlations,
their interferences give rise to a very particular temporal de-
pendence of linear polarization of the emitted light. Although
for the sake of argument we will focus on microcavity po-
laritons, this applies to any assembly of bosons which com-
bine spin degeneracy and irreversible coupling to the photon
field �finite lifetime�.

The remainder of the text is organized as follows: in Sec.
II we lay down the formalism which relates the pseudospin
of ground state polaritons to their quantum state. Our model
system is a microcavity pumped out of resonance and inco-

herently by a polarized or unpolarized pulsed light source.
We do not discuss—beyond some short comments postponed
at the end of the text—the dynamics of the polariton conden-
sate formation which has already been described elsewhere.8

Our goal is to describe the time evolution and dephasing of
the condensate �and therefore of the linear polarization� ver-
sus its coherence degree. The ground state is populated due
to both stimulated scattering and spontaneous scattering of
polaritons from the upper states. The spontaneous process is
responsible for dephasing of the condensate which results in
a decay of the order parameter. Its rate is given by D
��0 /2n0

14 where �0 is the radiative broadening and n0 the
population of the condensate. When n0 is large, this dephas-
ing becomes negligible compared with the energy shifts and
the energy broadenings induced by the polariton-polariton
interaction, as we show below. We propose a model Hamil-
tonian for this system and formulate approximations which
allow us to integrate it analytically. In Sec. III we discuss in
greater detail the notion of coherence degree in a single
mode condensate and we introduce a family of states with a
varying degree of coherence which are the foundation for the
subsequent analysis. In Sec. IV we merge the results from
previous considerations to show how one can extract accu-
rate values of g2�0� from a simple time resolved linear po-
larization measurement; this is the case where correlations
induced by pumping provide the system with a polarization
from the start. In Sec. V we study the case where no corre-
lation exists a priori in the system. We show how the linear
polarization maps to the BEC order parameter and we study
its dynamics.

II. FORMALISM

We consider a couple of energy-degenerated spin-up and
spin-down quantum states occupied by interacting exciton
polaritons, which behave as ideal bosons. Spin-up and spin-
down states correspond, respectively, to right- and left-
circular polarization of the emitted light. We study the im-
portance of dephasing induced by polariton-polariton
interactions in the ground state �weakly depleted condensate�
with a general Hamiltonian for interacting spin-polarized
particles with two projections of spin.17 To draw analytical
results we neglect the lifetime, the scattering toward spin-
forbidden �“dark”� exciton states, radiative decay, and spin-
lattice relaxation. Excited states with a much longer lifetime
keep constant populations on the time scale of the ground
state dynamics and contribute a small dephasing by sponta-
neous emission in the condensate of particles with a random
phase. This dephasing will be accounted for through the ini-
tial conditions, as its time scale is negligible in comparison
to the much quicker dynamics caused by the strong dephas-
ing from interactions in the condensate. With these assump-
tions the Hamiltonian reads in terms of the annihilation op-
erators a0↓ for spin-down and a0↑ for spin-up polaritons in
the ground state

H = ��a0↑
† a0↑ + a0↓

† a0↓� + W1�a0↑
† a0↑

† a0↑a0↑ + a0↓
† a0↓

† a0↓a0↓�

+ W2a0↑
† a0↑a0↓

† a0↓. �1�

The bare polariton energy is � and pairwise interaction with
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same �resp. opposite� spin has interaction constant W1 �resp.
W2�. In general, W1�W2 and often they even have an oppo-
site sign, reflecting the fact that while polaritons with parallel
spin repel each other, polaritons with opposite spins may
form a bound state, called a bipolariton.18 It has been shown
theoretically19 that �W2 � � �W1� and experimentally20 that
�W2 � �0.04 �W1�. In Ref. 19, �W1� is estimated for the
exciton-exciton interaction as

�W1� = 6EbaB
2 /S �2�

where Eb is the exciton binding energy, aB the exciton Bohr
radius, and S the surface of the condensate, given to good
approximation by the size of the exciting laser spot.

The intensity of right �resp. left� circularly polarized light
�a0↑

† a0↑� �resp. �a0↓
† a0↓�� is fixed by initial conditions, unlike

S�a0↑a0↓
† which does not commute with Eq. �1� and has a

dynamics given by Heisenberg equation

i q Ṡ = �S,H	 = V�a0↑
† a0↑ − a0↓

† a0↓ + 1�S , �3�

where V�2W1−W2. Operator S is the ladder operator Sx
+ iSy for operators Sx�Ra0↑a0↓

† , Sy �Ia0↑a0↓
† and Sz

�a0↑
† a0↑−a0↓

† a0↓, which follow a spin-half algebra. For this
reason S is called the pseudospin. It is a powerful represen-
tation for two-levels systems which allowed many insights
into the polaritons spin dynamics.21 The in-plane compo-
nents of the pseudospin characterize correlations that exist
between spin-up and spin-down condensates. Intensities of
linearly polarized components of the emitted light are linked
to the pseudospin as follows:

I↔ =
n0

2
+ �Sx�, I� =

n0

2
− �Sx� , �4�

where n0��a0↑
† a0↑+a0↓

† a0↓� is the total �constant� number of
particles, and the degree of linear polarization �l follows as

�l =
2��S��

n0
, �5�

which makes clear that spin interactions between the many
particles of a condensate in the ground state hypothetically
yield some dynamics worth studying of the linearly polarized
components, which we now endeavor to prove. Since a0↓

† a0↓
and a0↑

† a0↑ are two constants of motion under Eq. �1�, in
Heisenberg picture Eq. �3� is integrated straightforwardly

S�t� = e−iVt/qexp
 iVt

q
�a0↓

† a0↓ − a0↑
† a0↑��S�0� . �6�

S�t� is the projection of pseudospin on its initial direction.
The factor V��a0↓

† a0↓�− �a0↑
† a0↑�� is the energy splitting be-

tween right- and left-circularly polarized condensates which
arises if their populations are not equal. This splitting, also
referred to as optically induced Zeeman splitting, has been
theoretically analyzed22 and experimentally observed.23 The
pseudospin operator thus rotates at a speed given by the en-
ergy splitting between the two condensates. The remarkable
feature of this result arises when we move to quantum aver-
ages over possible states of the condensate. Before we return
to this point in Secs. IV and V, we first explain a gamut of

states which characterize the ground state as its coherence
degree varies from zero �thermal state� to one �coherent
state�.

III. SECOND-ORDER COHERENCE

The most relevant quantity to describe with a single scalar
quantity the quantum state of a single mode is the so-called
second-order correlator g2 defined as

g2�t,�� �
�a0

†�t�a0
†�t + ��a0�t + ��a0�t��
��a0

†�t�a0�t���2
�7�

for spatially homogeneous cases. We consider here the case
of g2�t ,0� only �zero-delay second order correlation func-
tion� since this is for zero delay that the field statistics are
most clearly imprinted in this quantity: For infinite delays all
particles become uncorrelated and g2 is 1, regardless of the
underlying quantum state. At zero delay, however, g2 equals
1 for the case of a coherent state, while it grows to 2 for
so-called thermal states, exhibiting the bunching effect typi-
cal of incoherent light.24 g2 is generally measured by HBT
experiments which are quantum optical in nature: They re-
quire single photon detections at the same time, from which
one infers statistical correlations. This is a rather delicate
experimental measure, but from the mathematical point of
view, g2�0� is merely computed from diagonal elements p�n�
of the density matrix

g2�0� =
�n=0

�
n�n − 1�p�n�

��n=0

�
np�n�	2

. �8�

From the above expression, it is straightforward to express
g2�0� as a function of the first two moments of p�n�, the
mean n0= �a0

†a0� and the variance Var�a0
†a0�=�2

g2�0� = 1 +
�2 − n0

n0
2 . �9�

In Sec. IV we shall see that to a very good approximation the
quantum average of S is also a function of the first two
moments of p�n� and thus a function of g2. In the meantime
we discuss the various statistics of interest in our case. We
have already spoken of the two extremes, namely, the coher-
ent case and the thermal case. The coherent case has Poisson
statistics

pcoh�n� = e−n0
n0

n

n!
, �10�

here of course �2=n0. The distribution is sharply peaked
about its mean, with small fluctuations in particle number
corresponding to the smallest quantum uncertainty allowed
for a state without amplitude squeezing. It is at the same time
the most classical state of the quantum realm �mapping as
closely as allowed by quantum mechanics to a monochro-
matic wave� and the ideal BEC picture for noninteracting
particles. This would be the state emitted by an ideal, noise-
less laser far above its threshold. Its second-order coherence
correlator g2�0� is 1. On the opposite, the thermal state, with
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g2�0�=2, has exponentially decreasing statistics

pth�n� =
n0

n

�1 + n0�n+1 . �11�

Now �2=n0
2+n0 and particles fluctuate wildly in the system

with occupancy of highest probability for the vacuum. For
temperatures at which microcavities are operated, this pre-
cludes high occupancy numbers, whereas we investigate
condensates which imply such high populations in a single
state. We will briefly consider this case as a limiting case of
mathematical interest but bear in mind that it is not realistic.

The physically relevant case is that of an essentially co-
herent state, say with nc particles, which is dephased by a
superimposed fraction of a thermal state, with nt particles.
Note that the denomination of “thermal” state does not imply
thermalization per se, but rather dephasing of the kind which
is best and most commonly illustrated by a field in thermal
equilibrium, that is with random phase and amplitude which
stems from a random walk �Gaussian�. The small fraction of
this so-called thermal state which broadens the coherent state
is caused by various dephasing mechanisms, like spontane-
ous diffusion from excited states. Such states are well known
to describe laser light above threshold.25 For excitons or po-
laritons, they have been obtained solving dynamically quan-
tum Boltzmann master equations.8,26 We will conveniently
refer to such particles as coherent and incoherent, respec-
tively, though of course once the coherent fraction and the
thermal fraction are merged, a particle does not belong any
longer to a part of this decomposition but is indistinguishable
from any other of the lot. This is just a vivid picture to
describe a collective state which has some phase and ampli-
tude spreading. We define the second-order coherence de-
gree 	 as the ratio of the number of coherent particles over
the total number of particles

	 =
nc

nc + nt
�12�

with nc+nt=n0. The density matrix of such a state is easily
built from Glauber’s P representation27 of the density matrix,
i.e., the “weighting factor” of � in the basis of coherent states
�
�

��t� = 
C

P�
,
*,t��
��
�d
d
*. �13�

The P function for the superposition of two uncorrelated
fields is given by the convolution of their P functions, which
are a � function for the coherent state and a centered Gauss-
ian for a thermal state.24,28 As a result, a whole gamut of
states with some degree 	 of coherence is modeled after
off-centered Gaussians, where the mean yields the coherent
fraction nc /n0 and where the spread yields the thermal frac-
tion nt /n0

Pcoth�
,
*� =
1

�nt
e−�
 − �ncei�2/nt. �14�

We have subscripted with “coth” these states which are a
mixture of coherent and of thermal states. Here  is the mean

phase of the condensate. The order parameter of the conden-
sate is �nce

i and is zero if nc=0, which is the thermal case.
The mean of Pcoth is of course n0. Its variance needs to be
computed

Var�Pcoth� = n0 + nt
2 + 2ncnt, �15�

and allows us to link 	 and g2�0� as

g2�0� = 2 − 	2. �16�

From Eqs. �13� and �14� one can extract the statistics needed
to compute �S�t��

pcoth�n� = 
C

Pcoth�
,
*���n�
��2d
d
*, �17�

which evaluates to

pcoth�n� = exp
−
n0	

1 + n0�1 − 	�� �1 + n0�1 − 	�	n+1

�n0�1 − 	�	n

�Ln
−
	

�1 − 	��1 + n0�1 − 	�	� �18�

where Ln is the nth Laguerre polynomial. This distribution is
plotted in Fig. 1 for values of 	 ranging from 0.91 to 0.99 by
step of 1%, also with the two limiting cases of the pure
coherent state �	=1� and the thermal state �	=0�. As one can
see, this distribution very quickly broadens for small devia-
tions from the coherent state, and becomes thermal-like, with
huge fluctuations of particle numbers, even for a neatly
dominant proportion of coherent particles. In the next sec-
tions we show how this results in sharp dependency of po-
larization on coherence.

FIG. 1. Probability distributions pcoth�n� of condensates with
n0=103 and with various degree of coherence, namely, with 	 run-
ning from 99% �sharper thin curve� to 91% �flatter thin curve� to-
gether with limiting cases of coherent �100%� and thermal �0%�
states, in thick lines. The Poisson distribution of the coherent state
assumes maximum value pcoh�103��0.013, more than three times
higher than is visible. In inset is shown for 	=97% the Gaussian fit
used to compute Eq. �31�. The approximation is better for higher 	.
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IV. POLARIZATION DYNAMICS FOR CORRELATED
CONDENSATES

We now show how �S�t�� depends crucially on the quan-
tum state, specified in its more general form by a density
matrix � of the spin-degenerated condensate, which is time
independent in the Heisenberg picture and thus fully speci-
fied by its initial condition. We first investigate the case
where the two condensates are correlated from pumping con-
dition, in the next section we turn to the case where the
pumping is unpolarized and where polarization buildup can
be used as an evidence of Bose condensation. We therefore
address the experimental situation of a polariton condensate
excited by fully polarized nonresonant pumping. In case of
no spin relaxation, the reservoir of polarized polaritons
formed at the excitonic part of the lower polariton dispersion
branch feeds the condensate formed at the ground state, so
that the condensate lifetime exceeds by a few orders of mag-
nitude the single polariton lifetime and can be assumed to be
infinite on the time scale of our interest.

As we consider elliptically polarized pumping in the gen-
eral case, it is advantageous to work in the basis of ellipti-
cally polarized states. A polariton with circular polarization
degree given by P�cos2 �−sin2 � is the coherent superposi-
tion of a spin-up polariton with probability cos2 � and of a
spin-down polariton with probability sin2 �, therefore, its
quantum state can be created from the vacuum �0,0� �zero
spin-up and zero spin-down polaritons� by application of the
following operator:

�1,�,�� � �cos �a0↑
† + ei�sin �a0↓

† ��0,0� . �19�

Here we also took into account the angle � of in-plane ori-
entation of the axis of the polarization ellipse, which how-
ever plays no role in what follows. This defines a�,�

† the
creation operator for an elliptically polarized polariton as

a�,�
† � cos �a0↑

† + ei�sin �a0↓
† . �20�

The superposition of n such correlated polaritons is obtained
by recursive application of the creation operator

�n,�,�� = a�,�
†n �0� =

1
�n!

�cos �a0↑
† + ei�sin �a0↓

† �n�0,0� ,

�21�

which we have normalized �here �0� is the vacuum in the
space of elliptically polarized states�. Writing the density ma-
trix in this basis, one obtains

�S�t�� = �
n,n�

�n,n��n,�,��e−iVt/q

�exp� iVt

q
�a0↓

† a0↓ − a0↑
† a0↑��S�0��n�,�,�� .

�22�

Simple but lengthy algebra yields for the matrix element
�details of the derivation are given in the Appendix�

�n,�,��exp� iVt

q
�a0↓

† a0↓ − a0↑
† a0↑��S�0��n�,�,��

= s0n��t�n−1�n,n�, �23�

with s0= 1 � 2sin 2�e−i� is the in-plane pseudospin of a single
elliptically polarized polariton, and where we introduced as a
shortcut

��t� � cos2 �e−iVt/q + sin2 �eiVt/q, �24�

from which follows the direct connection between the pseu-
dospin, or linear polarization, and the statistics p�n���n,n of
the condensate

�S�t�� = s0�n�n−1� , �25�

where the right-hand side average is over p�n�. Note that
�S�t�� depends only on diagonal elements of the density ma-
trix, that is, it depends on the statistics only and does not
reflect the behavior of the phase �apart from s0 which is time
independent�. Let us now evaluate the in-plane pseudospin
with the statistics introduced in the previous section. The
results that are shown correspond to a typical CdTe micro-
cavity with a lateral size of L=60 �m, an exciton binding
energy Eb=25 meV, an exciton Bohr radius aB=40 Å and
with the average number of polaritons in the condensate n0
�105. This gives the interaction strength V�10 neV �ob-
tained by multiplying formula �2� by the exciton fraction of
the polariton ground state, which is 1 /2 at zero detuning	.

In the pure coherent case �10�, the average pseudospin
�25� is easily computed as

�S�t�� = �S�0��exp�n0
cos
Vt

q
− 1��exp�in0P sin

Vt

q
�
�26�

with �S�0���s0n0 the initial in-plane pseudospin and P
�cos2 �−sin2 � the circular polarization degree. The in-
plane polarization oscillates with a period

Tcoh =
2�q

n0VP
�27�

given by the energy splitting between the circularly polarized
eigenstates n0VP. If the spin degeneracy is not lifted, �
=� /4 and the polarization axis does not rotate, only dephas-
ing takes place. This is the case of a purely linearly polarized
condensate made up of two completely correlated spin-up
and spin-down condensates of equal populations. If the con-
densate is elliptically polarized �with different average num-
bers of particles in its spin-up and spin-down components�
the main axis of the ellipse rotates with time: This is self-
induced Larmor precession. The projection of the pseudospin
on its initial direction oscillates in this case. The amplitude

of these oscillations decays like e−t2/�coh
2

with time constant

�coh =
�2q

�n0V
. �28�

This decay should be followed by a revival after a time
�2q /V which for parameters we consider falls in the micro-
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second range. Thus it cannot be observed since the polariza-
tion in the system will be lost because of the weak interac-
tions with polaritons from excited states �which were
neglected in this model�. In the thermodynamic limit—where
�n0V goes to 0 with the area of the sample occupied by the
condensate going to infinity, while the polariton density re-
mains constant—the dephasing of the coherent state van-
ishes, recovering a thermodynamical virtue of BEC in infi-
nite size systems.

In the thermal case �11�, the average pseudospin �25� is
computed as

�S�t�� =
�S�0��

�n0�1 − ��t�	 + 1�2 . �29�

The polarization decay time is given in this case by

�th =
�2q

n0V
, �30�

which is about 30 ps for the parameters of our model. As the
decay time is shorter than the period of the oscillations, none
can be observed in this case. Contrary to the coherent case,
the broadening does not vanish in the thermodynamic limit.
This shows that a linear polarization in the thermal state is
impossible. In reality, a pure thermal state is never realized
but if the thermal fraction is nonzero then the broadening
does not vanish either in the thermodynamic limit.

Now we turn to the general case �18�. In principle one can
compute numerically �S�t�� and in this way extract the period
of polarization oscillation and decay time. We repeat how-
ever that the region of interest is close to a coherent state
where a minute variation of 	 results in important changes of
the statistics. Observe also that pcoth in this region can be
approximated by a Gaussian. The inset in Fig. 1 shows the
quality of this approximation for 	=97% which we will see
is already far enough from the coherent states for interesting
effects to have already been observed. We therefore replace
the awkward exact distribution �18� by a Gaussian which
mean and variance are given by the first two moments of Eq.
�18�, that is, n0 and �2=n0+n0

2�1−	2�. This allows evaluat-
ing Eq. �25� in the continuous limit s0�x�x−1� to obtain an
analytical expression in a neighborhood of the coherent state

�S�t�� = �S0�exp
n0log ��t� +
1

2
�2�log ��t�	2� �31�

after neglecting logarithmically small values. Confronting
this expression with numerical computations proves it to be
sound even far away from the coherent state. In the limit t
� qV, Eq. �31� reads to order two in time

�S�t�� � �S0�exp�− t2/�2�exp�i2�t/Tcoh� �32�

with a decay time � given by

� =
�2q

V�n0 + n0
2P2�1 − 	2�

, �33�

while the period of polarization oscillation keeps the same
value �27� independent of the coherence degree �close to the
pure coherent state, this comes from approximating to n0 the

value at which pcoth�n� is maximum	. Most striking effects
therefore belong with the lifetime �33� which is the central
result of this section. Figure 2 shows the decay time of the
polarization versus the coherence degree of the condensate
for different linear polarization degree, for the structure al-
ready described. Note the peculiar influence of the circular
polarization degree P. The decay time � depends strongly on
it once coherence starts to decrease from one but is otherwise
unaffected in the pure coherent case. This polarization de-
pendence is not recovered in the limiting thermal case �cf.
Eq. �30�	, where Eq. �33� does not apply anyway and which
is not physical. Apart from P, however, the formula is quali-
tatively right. Pinning the polarization from pumping one can
thus accurately measure g2�0�. This measure requires no
quantum optical setup and can be fully realized thanks to
time-resolved polarized photoluminescence. The accuracy is
very good thanks to steep variation for well-chosen polariza-
tion. The population n0 can be determined from the purely
linearly polarized case, where the coherence degree plays no
role. Excited states may also strongly contribute to the
dephasing of the condensate but our present theory does not
describe this effect.

V. LINEAR POLARIZATION BUILDUP AS A SIGNATURE
OF SYMMETRY BREAKING

The previous analysis pertained to the case where corre-
lations existed between the two fractions of the condensate,
as is the case when polaritons are created by a polarized
pumping. We now turn to the case where there are no corre-

FIG. 2. Decay time � of the polarization in the case of polarized
pumping as given by Eq. �33�, as a function of the coherence degree
	 in a neighborhood of the coherent state, for P=cos2 �−sin2 �
ranging from 0 �upper envelope� to ±1 �lower envelope� for � vary-
ing by steps of 1 /40 rad. For a pure coherent state, the lifetime does
not depend on the polarization. By adjusting this polarization from
pumping, one can tune the steepness of decay and therefore the
accuracy of the measurement. For the linear polarization, � depends
on � on the fourth order of time only, and the change of decay with
	 is therefore not experimentally observable in this case. This can
be used to measure population or interaction strength, indepen-
dently of the quantum state of the condensate.
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lations, that is, to the case of unpolarized nonresonant pump-
ing. This brings the important feature that the appearance of
the order parameter in the condensate leads to the spontane-
ous buildup of linear polarization. This polarization appears
in the system without preexisting there. If the populations of
each spin projection are equal, its in-plane orientation is con-
stant in time, but randomly changes from experiment to ex-
periment in isotropic system. This linear polarization bears
much with a symmetry breaking and as we shall see is in fact
mapped to the product of the order parameters �a0↓� and
�a0↑�. In this sense, it serves as an order parameter for Bose
condensation of polaritons, that is, of particles with a spin
degree of freedom �so that the interference can take place�
and finite radiative lifetime �so that the effect on polarization
of the light emitted can be observed�. In this respect, this
simple effect has no possible realization with atoms.

In general the spin degeneracy is significantly lifted by
fluctuations feeding spin-up and spin-down condensates with
unequal populations. For classical particles these fluctuations
would yield a mean imbalance of �n0↑+n0↓ particles between
the two condensates with n0↑ spin-up and n0↓ spin-down par-
ticles and consequently the circular polarization degree �c
= �n0↑−n0↓� / �n0↑+n0↓� would vanish like the inverse square
root of the occupation number. However, because of stimu-
lation, the probability to reach one condensate or the other
depends on respective populations in such a way as to
strengthen the more populated state, leading to possibly
highly degenerated configurations. The probability for a par-
ticle to join the condensate with n0↑↓ particles is

p↑↓ =
n0↑↓ + 1

n0↑ + n0↓ + 1
. �34�

This yields ���c � �= �2+n0� / �2+2n0� which is approximately
1/2 for large values of n0�n0↑+n0↓. This corresponds to an
elliptically polarized light. Most frequently time-resolved po-
larization is measured under pulsed excitation and time av-
eraging of the emitted signal over a large number of pulses.
In such an experimental configuration, the average linear po-
larization degree of the emitted light is zero, since it assumes
a random value after each excitation pulse. The absolute
value of linear polarization should therefore be recorded after
each pulse, in order to demonstrate experimentally the Bose
condensation of the particles.

The analysis follows the same lines as previously starting
with the same Hamiltonian �1� until the time dependent ex-
pression �6� for the pseudospin. At this point, evaluation of
the average �S�t�� differs because the two fractions of the
condensate—namely, spin up and spin down—have been
formed independently and are not correlated, i.e., the density
matrix of the ground state factorizes as �=�↑ � �↓ and con-
sequently

�S�t�� = e−iVtTr�exp�− iVta0↑
† a0↑	a0↑�↑	

�Tr�exp�iVta0↓
† a0↓	a0↓

† �↓	 . �35�

The initial in-plane pseudospin reads

�S�0�� = 
↑
↓
* �36�

with the definition of order parameter for each circularly po-
larized condendate given, as usual, by 
↑↓��a0↑↓�
=Tr�a0↑↓�↑↓�. From Eqs. �5� and �36� one establishes an ex-
plicit connection between the linear polarization �l and order
parameter of BEC defined in the usual way as the system
average over the Bose annihilation operator. Indeed appear-
ance of the linear polarization in the condensate is observed
only if an order parameter builds up for each of the circularly
polarized components. The measurement of the circularly
polarized emission gives access to n0↑↓ which combined with
the measurement of the linear polarization degree gives a
measurement of the order parameter. Note that the superpo-
sition of two states with a Poisson distribution but no well-
defined phase �randomly phased coherent states� does not
lead to an in-plane polarization, so that the effect is really
associated with the phase, not merely with coherence in the
sense of Poisson statistics.

In what follows we compute the time dependence of the
in-plane pseudospin versus the coherence degree of the indi-
vidual condensate using Glauber representation of the den-
sity matrix �13� upgraded to describe the spin degree of free-
dom,

�↑↓ = �
↑↓��
↑↓�P�
↑↓,
↑↓
* �d
↑↓d
↑↓

* �37�

with 
 here characterizing the coherent state �
� �with a
given amplitude and phase�. From this definition one obtains

�S�t�� = e−iVt P↑�
↑,
↑
*�

��
↑�e−iVta0↑
† a0↑a0↑�
↑�d
↑ P↓�
↓,
↓

*�

��
↓�eiVta0↓
† a0↓a0↓

† �
↓�d
↓. �38�

The initial coherence degree in each of the individual con-
densates is given by, cf. Eq. �12�

	↑↓ =
�
↑↓�2

n0↑↓
=

n0↑↓,c

n0↑↓,c + n0↑↓,t
= �2 − g↑↓

2 �0� , �39�

with g↑↓
2 �0� the second-order coherence of the individual

condensates, n0↑↓,t the average numbers of spin-up and spin-
down polaritons in the thermal fraction, and n0↑↓,c= �
↑↓�2 the
average numbers of spin-up and spin-down polaritons in the
coherent fraction, in the sense outlined in Sec. III. Here also
	↑↓ varies between 0 �thermal state� and 1 �coherent state�.

Using Eq. �14� for each fraction of the condensate in the
above formula, one finds

�S�t�� =

�S�0��exp
−
n0↑,c�

n0↑,t� + 1
−

n0↓,c�
*

n0↓,t� + 1
�

�n0↑,t� + 1�2�n0↓,t�
* + 1�2 �40�
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with ��1−exp�−iVt	.
We now consider the likely configuration where the coherence degrees of spin-up and spin-down condensates are equal and

given by 	. In the limit Vt�1, expression �40� is approximately given by

�S�t�� = �S�0��
e−in0�c	Vte− 1

2
�n0+�1−	��1+�c

2�n0
2�	V2t2


1

2
�1 − 	��1 + �c�n0iVt + 1�2
1

2
�1 − 	��1 − �c�n0iVt − 1�2 . �41�

The behavior of the pseudospin is dominated by the nu-
merator of Eq. �41� in the vicinity of the coherent case �	
�1� and by the denominator in the opposite limit, close to
the thermal case �	�0�. In a narrow region close to full
coherence, the pseudospin oscillates in time with a period

T0 =
2�

Vn0	��c�
. �42�

Conversely to the period of oscillations, the amplitude is
very sensitive to the coherence degree. The pseudospin de-
cays like exp�−t2 /�2� with characteristic time

� =
�2

V��n0 + �1 − 	��1 + �c
2�n0

2�	
. �43�

This decay is caused by the energy broadening of the state
which is induced by the huge thermal fluctuations in particle
number which result in fluctuations of energy and hence on
destructively interfering oscillations of the Larmor preces-
sions. For the completely coherent case where the fluctua-
tions in the particle number are as small as allowed without
squeezing, the decay time is as high as

�coh =
�2

V�n0

. �44�

Note that it increases with L2 so that the polariton density
remains constant, thus the dephasing of a coherent state van-
ishes in the thermodynamic limit, which again fits well with
the classical picture of BEC. However, the presence of even
a tiny thermal fraction dramatically reduces the decay time.
If n0�1−	��1, the decay times evaluates to

� =
�2

Vn0�1 − 	�
, �45�

which is vanishing. Contrary to �coh, it remains finite in the
thermodynamic limit, thus looses the linear polarization of
the condensate no matter how small the thermal fraction.
Thus, only in a narrow region close to full coherence does
the pseudospin exhibit oscillations in time. For values of 	
below 85%, there are no observable oscillation and the decay
is very fast as well as almost independent of the coherence
degree. In the limit of small 	, the pseudospin decays like a
Lorentzian

��S�t��� �
1

�1 + 2i�1 − 	�n0V��c�t�
. �46�

On the opposite, close to the coherent limit, the pseu-
dospin oscillates with a period given by the energy splitting
between the circularly polarized eigenstates in the coherent
fraction.

It also depends on the coherence degree but since the
range of validity of this formula is for a small domain of 	
about one, the period of oscillations is essentially indepen-
dent of the coherent properties of the state. This period is
however sensitive to the circular polarization degree of the
condensate which absolute value runs from 0 to 1. The lower
limit is reached when the spin degeneracy is not lifted in
which case the polarization axis does not rotate and only
dephasing takes place. The orientation of linear polarization
is random in a system having a perfect in-plane isotropy.

Figure 3 displays the decay time � as a function of the
coherence degree 	. Parameters are still for a CdTe cavity,
now with n0=104 polaritons in the ground state and �c
=1/2. The solid-dotted line results from numerical calcula-
tions with Eq. �41�, estimating the typical lifetime as the time
it takes for �S�t�� to decrease by a factor e. This is natural in
the limit of coherent states where the decay is exponential.
The solid line superimposed is obtained analytically from
Eq. �43� which holds over half the defining domain of 	. The
curve is displayed dotted below 50% where it looses physical
meaning. Past this point, the decay looses its exponential

FIG. 3. Decay time of the polarization in the case of unpolarized
pumping, with bullets on numerical points and its analytical ap-
proximation �43� which holds in the vicinity of coherent cases
�solid�, here for �c=1/2. The unphysical behavior of Eq. �43� out of
its range of validity is shown dotted.
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character to behave according to the denominator of Eq.
�46�, i.e., approximately like a Lorentzian. Figure 4 shows
the decay of the pseudospin in these two opposite regimes.
The right-hand side displays the pure coherent case, where
many oscillations are sustained for as long as several nano-
seconds even though there is a very large number of par-
ticles. The decay time caused by spontaneous emission is
even longer �few hundreds of nanoseconds in the present
case�. It is interesting to compare the dephasing time and the
typical coherence buildup time, the characteristic time
needed for a coherent state to appear after the nonresonant
pumping is switched on, which we have found to be, for
CdTe microcavities, of the order of a few hundreds of pico-
second. This comparison shows that the dephasing induced
by the polariton-polariton interaction does not prevent for-
mation of coherent states and therefore symmetry breaking
in polariton systems. The left-hand side displays two almost
coherent cases where the decay time has drastically de-
creased because of the phase mismatches brought by the
thermal fraction. Also displayed is the thermal case, here for
	=1%, though this overdamped, nonoscillating decay is
characteristic for all cases with 	�85%. Since the decay
time of �S�t�� is very sensitive to the coherent degree of the
condensate, it allows for easy and accurate measurements.
We also point out that the dephasing time of a single com-
ponent condensate can be straightforwardly extracted from
the present formalism. We do not address specifically this
aspect because this quantity is much harder to measure for a
single component condensate than for a superposition of two
different ones.

As an aside we now comment briefly on connections be-
tween the results presented here relating to the dephasing of
the condensate and results relating to its buildup, especially
those published by the present authors in Ref. 8. The main
issue is whether the dephasing time is long enough so that
the condensate has time to form before its polarization is
irremediably lost. This is an important question for otherwise
the predicted effect cannot be observed. Yet its quantitative
answer is out of the scope of the present paper, where we

have confined the buildup stage to initial conditions. As the
dephasing depends on the number of particles in the conden-
sate, one needs to couple the present model to the formalism
laid down in Ref. 8, which is not straightforward technically
as it doubles the number of equations in an already heavy
system. We now offer some qualitative support for the pos-
sibility to operate the cavity in a regime where polarization
outlives the buildup time. First, one should not directly com-
pare the time scales of the coherence buildup and the polar-
ization dephasing, since the rapid dephasing comes from
high occupancy and therefore applies to the fully formed
condensate. It is less strong when the latter is in its buildup
stage with fewer particles. Second, Ref. 8 also shows that
while time scales for coherence and population buildup are
the same, coherence nevertheless has a steeper increase than
population so that the high coherence and small occupancy
favor a qualitative support for an initial state which has a
high degree of polarization and of coherence, as we have
assumed. That the coherence degree can be as high as we
have demanded is a result of our own findings but also of
Ref. 26 where—fitting the statistics here obtained with pcoth,
Eq. �18�—coherence degrees significantly higher than 99%
are found. So under the suitable experimental conditions, as
coherence buildup and polarization dephasing are largely un-
related and can be tuned independently, one can maximize
their respective time scales to offer the best visibility of our
effect.

Finally, let us discuss the relevance of the present model
to the important case of a polariton laser working in the cw
regime. To describe correctly this situation, one should intro-
duce the mechanism of spontaneous symmetry breaking re-
sponsible for the buildup of linear polarization in the system.
Our present consideration remains valid for estimation of the
lifetime of this polarization which is nothing but the coher-
ence time of the polariton laser �directly linked to its coher-
ence length�. In cw regime, emission of the polariton laser
must be always polarized if the symmetry breaking took
place. However, orientation of this spontaneous polarization
randomly changes on a time scale given by the decay time
we calculated here.

VI. CONCLUSIONS

We have shown how the linear components of polariza-
tion of the light emitted by a microcavity-polaritons conden-
sate is intimately related to its coherence and phase property.
We showed that the decay time of the linear polarization
depends strongly on the circular polarization degree which
can be tuned experimentally by the polarization of the pump.
In the vicinity of a coherent state with g2�0��1 the lifetime
of the linear polarization becomes orders of magnitude
longer than in thermal or mixed states where g2�0��1. This
measure therefore allows an accurate, though indirect, deter-
mination of the zero delay second-order coherence. In the
case where the pumping light is unpolarized, the spontaneous
appearance of linear polarization is a criterion for Bose con-
densation as it implies a well-defined phased �symmetry
breaking� as well as a high degree of coherence �Poisson
statistics�. The degree of linear polarization depends on the

FIG. 4. Decay of the linear polarization in the case of unpolar-
ized pumping for the full coherent case �	=1� on the right, featur-
ing sustained oscillations, and the impact of thermal contamination
�	=0.01, 0.9 and 0.99� on the left. Note the different time scale �the
period is the same on both graphics.�
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order parameters of the two fractions �spin up and spin
down� of the condensate. Its decay time increases with an
increase of the degree of coherence of the condensates. In
case of a fully coherent state, it is proportional to the square
root of the number of polaritons in the ground state. If the
polariton condensate is elliptically polarized and in a coher-
ent state, the in-plane component of its pseudospin rotates
with a period proportional to the circular polarization degree
of the condensate and to the number of polaritons in the
ground state. This results in rotation of the main axis of the
polarization ellipse of the emitted light. Thus, by measuring
time-resolved linearly polarized photoluminescence one can
obtain detailed information on population of polariton con-
densates, their order parameters and coherence degrees. We
focused on the ground state only, thereby neglecting cou-
pling to excited states and thus the dynamics of relaxation,
amply covered elsewhere.8 Our point here was to draw the
consequences of a weakly depleted condensate already exist-
ing in the ground state, not to analyze the dynamics of its
formation. On the same basis, we did not consider the life-
time in the hamiltonian though of course radiative lifetime is
mandatory for the effect be observed from the light field
emitted by unstable polaritons. This approximation holds
when the lifetime of the condensate is long as compared to
the dephasing time we compute.
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APPENDIX: DERIVATION OF EQ. (23)

We detail the derivation of Eq. �23� needed for the com-
putation of �S�t��:

�n,�,��e−iVt/qexp� iVt

q
�a0↓

† a0↓ − a0↑
† a0↑��S�0��n�,�,��

=
e−iVt/q

n! ��0,0��
�=0

n

� n
��
��*�n−��a0↑

� a0↓
n−��

�exp� iVt

q
�a0↓

† a0↓ − a0↑
† a0↑��a0↑a0↓

†

���
�=0

n�

� n�
� �
��n�−�a0↑

† �a0↓
† n�−��0,0�� , �A1�

where we introduced 
�cos � and ��ei�sin � as shortcuts
and reverted to explicit expression �21� for �n ,� ,��. Thus, in
the spin–up/down polaritons basis

=
e−iVt/q

n! ��
�=0

n

� n
��
��*�n−���� ! �n − ��!�n − �,���

�exp� iVt

q
�a0↓

† a0↓ − a0↑
† a0↑��a0↑a0↓

†

���
�=0

n�

� n�
� �
��n�−��� ! �n� − ��!��,n� − ��� . �A2�

We can now evaluate the operator, say, on the right expres-
sion

=
e−iVt/q

n! ��
�=0

n

� n
��
��*�n−���� ! �n − ��!�n − �,���

���
�=0

n�

� n�
� �
��n�−�exp� iVt

q
�n� − 2� + 2��

��� ! �n� − ��!���n� − � + 1��� − 1,n� − � + 1�� .

�A3�

Since �n−� ,� ��−1,n�−�+1�=��,�−1�n,n�, summing over �
yields

=
e−iVt/q

n!




�
�
�=0

n−1

� n
��� n

�+1�
2����2�n−��

��� + 1� ! �n − �� ! eiVt�n−2��/q �A4�

=eiVt�n−1�/q


�
�
�=0

n−1
n!

� ! �n − � − 1�!

2����2�n−��e−2iVt�/q

�A5�

the sum can be computed exactly by the usual method of
integration and derivation with respect to � to recover the
coefficients in the binomial expansion. This way we evaluate
the sum to �2�e−2iVt/q
2+ ���2�n−1n, so that with the prefactor,
the expression simplifies to

=n cos � sin �ei��e−iVt/qcos2 � + eiVt/qsin2 ��n−1, �A6�

which is the expression of the text.
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