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Luminescence spectra of quantum dots in microcavities. III. Multiple quantum dots
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We discuss the spectral line shapes of N quantum dots in strong coupling with the single mode of a microcavity
in the presence of a continuous, incoherent pumping. Nontrivial features in the response of the system are induced
by detuning the emitters or probing the direct exciton emission spectrum. We describe dark states, quantum
nonlinearities, emission dips, and interferences and show how these various effects may coexist, giving rise to
highly peculiar line shapes.
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I. INTRODUCTION

The coherent coupling of one semiconductor quantum dot
(QD) exciton to the optical mode of a microcavity has been
intensely investigated over the last years in cavity quantum
electrodynamics (cQED) experiments1–20 and theory.21–40 The
possibility of coupling strongly more than one quantum dot to
the (still single) microcavity mode40–48 is starting to emerge
experimentally,4,19,49,50 as technology makes always more
accessible the design and control of complex configurations
with multiple quantum dots.51,52 The rich physics of the
single-quantum-dot case is thus finding an even richer and
wider arena where N > 1 dots are simultaneously involved.
This echoes the theoretical route taken by the fathers of this
field with the Tavis-Cummings model53 in 1968 extending
to N atoms the Jaynes-Cummings model54 of 1963, which
considers the case of a single emitter.

A typical characterization of quantum dots in a microcavity
is through photoluminescence: the system is excited incoher-
ently and its luminescence is detected as a function of the
energy of the emitted photons. The single-quantum-dot case
displays much of the behaviors that are generalized with N

emitters, so it is helpful to review them here. The experi-
mentally obtained spectral shapes of strongly coupled QD-
cavity systems have been directly compared to a theoretical
model,11,12,19,23 and the agreement is excellent. It was assumed
in these cases that most of the light escapes the system via
the radiation pattern of the cavity mode, and the experimental
spectra were compared to the spectral function calculated from
the cavity occupation. This detection geometry is known in
atomic cQED as “end emission” or “forward emission.”55 In
atomic systems, a negligible fraction of the light escapes the
cavity through the cavity mode; that is to say, the cavity photon
lifetime is so long that it can be considered infinite. Light is
then detected in the so-called side-emission geometry, where
the radiation pattern of the emitter is directly probed. With
microcavities, the situation is reversed: the cavity mode is
measured and the emitter has typically a much longer lifetime.
In the spontaneous emission regime, this makes measurements
of the Rabi doublet in the photoluminescence more difficult,
unless some cavity feeding makes the quantum state of the
system photonlike.23 This is because changing the nature of
the excitation is, in the linear regime, equivalent to changing
the channel of detection.27 In the nonlinear regime, this also

hinders the observation of the quantized structure of the energy
levels, the celebrated Jaynes-Cummings ladder. There are four
possible transitions between consecutive rungs of the ladder
and these have the same intensity in the exciton emission but
different intensities in the cavity emission. This is because in
the cavity emission the photon has two paths to be emitted:
one with the dot in its ground state, the other with the dot
in its excited states.28 These two paths interfere destructively
when the initial and final states are out of phase, which is
the case for two out of the four possible transitions, and
constructively when the initial and final states are in phase, or,
up to a photon, indistinguishable. In the dressed-state picture,
the cavity photon to be emitted decouples from the polaritons
and carries away little information from the coupled system,
being more cavity-photonlike as the number of excitations
becomes higher. On the other hand, the photon emitted directly
by the dot does not decouple from the system, regardless of
the number of excitations: the dot cannot lose its excitation
without fundamentally altering the state of the entire system.
As a result, the dot photon carries more information about the
coupled system. Summarizing, the dot is essentially a quantum
emitter whereas the cavity is essentially a classical emitter.

It is, therefore, extremely interesting to develop techniques
to directly probe the dot(s) emission using an experimental
geometry that excludes light arising from the cavity. The ratio
R of photons emitted by one quantum dot compared with the
cavity depends on the populations of the dot (n1) and cavity
(na), and their rate of emission, γ1 and γa , respectively.

R = n1γ1

naγa

. (1)

This ratio is typically small since—apart from the fact that 0 �
n1 � 1, whereas na is unbounded—in typical experiments,
γ1 � γa . Therefore, one should take advantage of the detection
geometry to detect light in a solid angle where the cavity does
not emit. In a photonic crystal, one could try to filter out the
areas of most intense cavity emission by selective collection
of the far-field emission. This is, however, not efficient enough
to compensate the several-order-of-magnitude difference in R
(we estimate the ratio of cavity to dot emission by comparing
the far-field emission pattern of an L3 cavity mode obtained
from finite-difference time-domain simulations with the emis-
sion of an isotropic emitter. From assuming collection for
different numerical apertures or blocking of these numerical
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FIG. 1. (Color online) Sketch of the two main channels of
emission from a quantum dot in a microcavity, here illustrated with
a micropillar. The cavity emission, or end emission (Sa , in blue),
emits along the axis of the structure. The QD emission, or side
emission (Sσ , in purple), emits through the leaky modes (pictured
as a beam). The emission spectra can be decomposed into their
polariton emission [dashed (red) curves], which is intrinsic to the
coupling inside the structure and is therefore identical in both cases.
The channel of detection superimposes to the polariton emission
an interference part [dotted (orange) curve], which summed with
the polariton contribution provides the observed spectrum, the filled
line shapes. For the parameters chosen, the Rabi splitting between
polaritons is observed in the QD emission but not in the cavity
emission.

apertures we could estimate a maximum inhibition of the cav-
ity emission compared to the dot emission of a factor of ∼2.5.)
The direct dot emission is therefore more easily accessible in
a micropillar geometry,56 where one can detect from the side
of the structure, as depicted in Fig. 1. The feasibility of such
experiments has already been demonstrated.57 Figure 1 shows
that the intrinsic polariton splitting [dashed (red) curves] is
either magnified or washed away in the luminescence observed
in the quantum dot [solid (purple) curve] or cavity [solid
(blue) curve], respectively, as a result of the superimposed
interference term [dotted (orange) curve]. In the case of the
quantum dot emission, although the result is qualitatively
similar in this case, it should not be trusted to provide accurate
quantitative estimates.58 In this text, we do not take further
interest in the practical question of how to separately detect the
dot(s) and cavity emission but show the differences that are ob-
served when probing the strong-coupling physics in these two
channels of emission. We revisit the case N = 1 to provide a
background for the general case. With more than one quantum
dot, we show that some of the physics observed in the direct
quantum dot emission of the single emitter can be transferred
to the cavity emission and therefore be easily detected experi-

mentally. As in the previous parts of this work,27,28 we address
both the linear and nonlinear regimes (under incoherent and
continuous pumping as the scheme of excitation) and focus
on the line shape of the luminescence spectra. The effects
we discuss are not limited to the case of quantum dots in
a microcavity. Systems with many identical quantum emitters
are equally well described by our formalism. Examples include
atomic ensembles coupled to a high-finesse Fabry-Pérot
cavity,59,60 superconducting qubits coupled to a microwave
resonator,61–63 or an ensemble of color centers in diamond.64–66

II. MODEL

The Hamiltonian for N independent excitons (in different
two-level systems QDs) coupled to a common cavity mode
is merely a sum over the various emitters of the single QD
Hamiltonian of Part II of this work:28

H =
N∑

j=1

[ωjσ
†
j σj + gj (a†σj + σ

†
j a)] + ωaa

†a, (2)

where σ
†
j , σj are the pseudospin operators for the excitonic

two-level systems consisting of the ground state |0〉 and a
single exciton |Xj 〉 state of the j th QD; ωj is the exciton
frequency, a† and a are the creation and destruction operators
of photons in the cavity mode with frequency ωa , and gj

describes the strength of the dipole coupling between the cavity
mode and the exciton of the j th QD. The incoherent loss and
gain (pumping) of the dot-cavity system is included in a master
equation of the Lindblad form dρ

dt
= −i[H,ρ] + L(ρ), where

L(ρ) =
N∑

j=1

[
γj

2
(2σjρσ

†
j − σ

†
j σjρ − ρσ

†
j σj )

+ Pj

2
(2σ

†
j ρσj − σjσ

†
j ρ − ρσjσ

†
j )

]

+ γa

2
(2aρa† − a†aρ − ρa†a)

+ Pa

2
(2a†ρa − aa†ρ − ρaa†). (3)

Here, γj is the j th exciton decay rate, Pj is the rate at which
excitons are created by a continuous-wave pump laser in the
j th QD, γa is the cavity loss, and Pa is the incoherent pumping
of the cavity. Pumping of the cavity from nonresonant QDs
was observed and investigated by different groups.5,14,15,67–72 It
has been shown how the effective quantum state realized in the
system under the interplay of the two types of pumping (cavity
and exciton) imparts a strong influence on the line shape,23 as
detailed extensively previously.27,28 In the linear regime, this
is a counterpart of the different channels of emission. A pure
dephasing rate of the exciton in the j th QD could be included
to account for effects originating from high excitation powers
or high temperatures.11 However, such effects have a tendency
to merge together the closely spaced peaks arising from higher
rungs of the Jaynes-Cummings ladder,73 and we neglect it here
for the sake of simplicity.

Assuming that the system achieves a steady state for long
times and employing the Wiener-Khintchine theorem, we
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FIG. 2. (Color online) One dot in a cavity. Emission spec-
trum from the radiation channel of the exciton S1(ω), from the
radiation channel of the cavity mode Sa(ω), and eigenstates of
the system. Parameters: γa/g = 0.5, γ1/g = 0.1, P1/g = 10−3,
and Pa = P1.

calculate the spectral function74 when photon emission occurs
via the normalized radiation pattern of the cavity,

Sa(ω) = 1

naπ
lim
t→∞ Re

∫ ∞

0
dτe−(�R−iω)τ 〈a†(t)a(t + τ )〉, (4)

and via the normalized radiation pattern of the j th QD:

Sj (ω) = 1

njπ
lim
t→∞ Re

∫ ∞

0
dτe−(�R−iω)τ 〈σ †

j (t)σj (t + τ )〉.
(5)

We included in the expression the term �R that takes into
account the finite spectral resolution of a monochromator,75

which is 10 μeV (half-width) for a good monochromator by
today’s standards. The qualitative effect of this term is to
broaden the peaks and blur the features. Therefore, in the
following we assume it is zero (i.e., the case of a perfect
detector).

Using the quantum regression theorem,76 the emission
eigenfrequency is obtained by solving the Liouvillian equa-
tions for the single time expectation value and has been amply
detailed elsewhere.77 Assuming that the emission energy of
different QDs changes differently with respect to a control
parameter, which is the case for electrically tuned QDs, we
can bring two or more QDs into resonance at the same time.
This can be simply modeled by an effective control parameter
such as ωj = αjVcontrol, where αj gives the different slopes
of emission frequency with the control parameter Vcontrol. The
emission frequency of the cavity mode is assumed not to be
affected by this control parameter.

III. ONE EMITTER

We revisit the simplest and most popular case of one QD
strongly coupled to the cavity mode. This was the system
studied in the previous parts of this work.27,28 As before, we
compare the emission spectra of the cavity and dot emission,
emphasizing results of interest that we find to be magnified
in the case of multiple QDs. We plot in Fig. 2 the emission
spectra from the radiation channel of the exciton S1(ω), from
the radiation channel of the cavity mode Sa(ω), and the
eigenstates. Close to resonance, both the exciton and the
cavity mode emit into both radiation channels and the radiation
patterns are very similar [see also Fig. 3(a)]. Far away from
resonance, the spectra look different, the excitonic channel
S1(ω) being dominated by the emission of the exciton and the
cavity channel Sa(ω) being dominated by the cavity emission.
However, a difference in the relative emission strengths cannot
be directly attributed to a preference in the radiation channel.
It is also dependent on the experimental parameters, on the
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FIG. 3. (Color online) Cavity [solid (blue) curve] and dot [dotted (purple) curve] emission spectra for one dot in a cavity as a function of
pumping power. In the spontaneous emission regime (a), there are no qualitative differences between the two types of spectrum. Increasing
pumping (b)–(d) shows markedly different behaviors in the two channels of emission. Whereas the cavity spectrum does not present a
particularly rich phenomenology (collapse of the Rabi doublet), the dot emission displays more characteristic line shapes. Side elbows are
formed [outlined with arrows in (b)] and strong deviations from Lorentzian lines are obtained even when the spectrum has only one peak.
Parameters: γa/g = 0.5, γ1/g = 0.1, Pa = 0, and (a) P1/g = 10−3, (b) P1/g = 0.5, (c) P1/g = 1, and (d) P1/g = 2.
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FIG. 4. (Color online) Cavity spectrum of one dot in a cavity as
a function of detuning. Lower panels, decomposition of the spectrum
in its dressed states emission lines [|1,±〉 → |vacuum〉, dashed
(green) curve; and |2,±〉 → |1,±〉, dotted (red) curve], showing how
(a) Jaynes-Cummings transitions are hindered at resonances but
(b) are revealed out of resonance. Parameters are the same as in
Fig. 3 but with the detunings 
/g = 0, 0.6, 1, and 2 and P1/g = 0.4.

specific pumping rate of the exciton, on the number of other
transitions or QDs feeding the cavity mode, and of course on
the different coupling terms. In the solid-state environment the
exciton is coupled not only directly to the cavity mode, but also
via the phonon bath.37,38,70,78

Upon increasing the pumping level, one reaches the
nonlinear regime and climbs the Jaynes-Cummings ladder.28

For the cavity emission at resonance, in a typical system
where the coupling strength is not much larger than the decay
rates, this transition results in an apparent collapse of the
Rabi doublet into a single line. If the number of photons is
high enough, this line narrows as a consequence of the cavity
entering the lasing regime.79 This transition, displayed as a
solid (blue) curve in Fig. 3, has been reported experimentally.17

Its counterpart in the dot emission [dotted (purple) line] is
richer in qualitative features in the nonlinear regime.28 This

manifests by the elbows in Figs. 3(b)–3(d) [indicated by
arrows in Fig. 3(b)] that arise from the transitions |n,±〉 →
|n − 1,∓〉, which are suppressed in the cavity emission. We
have used the standard notation for the eigenstates of the
Jaynes-Cummings Hamiltonian with |n,±〉 the state with n

excitation(s) of higher (+) and lower (−) energy (the level
structure is displayed in Fig. 2 of Part II). In the lasing regime,
Fig. 3(d), the dot emission is strongly non-Lorentzian and
exhibits a characteristic line shape reminiscent of the one-atom
laser.79

A simple and convenient way to evidence Jaynes-
Cummings nonlinearities is to bring the system out of
resonance. In this way, transitions that are otherwise closely
packed together can be separated and resolved in the photo-
luminescence spectrum. This is shown in Fig. 4 for the same
system as previously but detuning the two bare emitters from
each other by 
 = ω1 − ωa . The Rabi doublet at resonance
turns into a triplet at small detunings. This is because one of the
transitions, |2,±〉 → |1,±〉—which is too broad and too close
to the linear transitions |1,±〉 → |vacuum〉 at resonance—can
be distinguished at a small detuning, as shown in Figs. 4(a)
and 4(b).

Transitions between dressed states provide a faithful
mapping to the exact system dynamics when the system
operates in the very strong coupling regime, such that dressed
states are well defined and do not overlap appreciably with
each other. In the case where they overlap, say because the
splitting between dressed states is small or because their
broadening is large, interferences between the states enter
the picture. The luminescence can indeed be decomposed
as a sum of Lorentzian emissions from the dressed states
with dispersive corrections arising from each dressed state
driving or being driven by the others.28 These interferences
can become particularly strong and complex when the system
is brought toward the classical regime, that is, with a lot
of excitations. In this case, many dressed states enter the
collective dynamics, and their overlap as well as mutual
disturbance are thus much stronger. This effect is also better
seen at nonzero detuning. Although the interference grows
with pumping also at resonance, it tends to be canceled by
symmetry: dressed states from both sides of the origin (set at
the bare cavity emission) equilibrate each other. However, with
detuning, imbalance between emission from various dressed
states magnifies the interferences. This is shown for instance
in Fig. 5, which reproduces Fig. 3 (for the dot emission only)
but at detuning 
 = 2g. The figure shows how, as pumping

FIG. 5. (Color online) Dot emission spectrum of one dot in a cavity, out of resonance, as a function of pumping. The Rabi doublet in
the spontaneous emission regime (a) gives rise, with increasing pumping (b)–(d), to an emission dip: the incoherent excitation is coherently
scattered to the cavity which enters the lasing regime. This is better seen at nonzero detuning. Parameters are the same as in Fig. 3 but for

 = 2g.
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FIG. 6. (Color online) Detail of Fig. 5(d). The interference that
arises as the system enters lasing is best seen in the detuned
system because dressed states [solid (purple) curve] are then of
a markedly different character; cf. the exciton line broadened by
pumping (on the right), and the narrow line of the cavity that
enters lasing (at the origin). The interferences between dressed states
[dotted (brown) curve], which added to the dressed state emission
provide the photoluminescence spectrum [filled (purple) area],
strongly modify the results of kinetic theory applied to the dressed
states.

is increased, an “emission dip” develops at the origin as the
lines broaden (we use this terminology of a “dip” from the
mere appearance it takes in the spectral shape). It starts to
be particularly visible in Fig. 5(b), whereas, at low excitation
[Fig. 5(a)], one merely sees the exciton, detuned, favoring its
own mode of radiation, just as in the linear case (cf. Fig. 2).
Note how, at resonance, in Fig. 3, this interference is masked,
being essentially canceled by symmetry.

The physical origin of this dip is linked to the cavity
entering the lasing regime at this frequency and, therefore,
depleting excitation from the quantum dot.80 In Fig. 6, we
show a decomposition of Fig. 5(d) into the sum of dressed-
state emission [thick solid (purple) curve] and the sum of
interferences between the dressed states [dashed (brown)
curve]. The observed photoluminescence spectrum is the sum
of these two contributions, obtained from a mathematical
decomposition of G(1)(t,τ ) = 〈a†(t)a(t + τ )〉 into terms that
give rise to Lorentzian lines (identifying the dressed states) and
to dispersive interferences when the dressed-state emissions
overlap.28 The final result can be adequately described by
the dressed states only whenever interferences between them
are negligible, that is, when they do not overlap. This is
the case at low excitation and in the very strong coupling
regime, when g 	 γa,γ1 and the splitting-to-broadening ratio
of all transitions is large. In this case, a kinetic theory
that computes mean occupation of the dressed states with
rate (Boltzmann) equations is adequate.40 Otherwise, a full
master equation approach is required, although it may quickly
become intractable numerically. As the intensity is further
increased, interferences result in the breakdown of the dressed-
state picture when the system acquires some macroscopic
coherence. Analytical investigations show that the emission
dip corresponds to a coherent scattering peak from the dot to
the cavity, which, in some approximations, becomes a Dirac
δ function that describes Rayleigh scattering.79 We will now

see how such phenomena can be magnified in the case of N

emitters and transported to the cavity emission, which is easily
detectable.

IV. MORE THAN ONE EMITTER

The dynamics of systems containing several strongly
coupled and strongly dissipative emitters becomes extremely
interesting and rich as new paths of coherence flow between
the dressed states are opened by pumping and decay. This can
give rise to new peaks not accounted for by the dressed-state
picture.81

At low pumping, when all N -QD excitons are exactly
at resonance with the cavity mode, the eigenvalues and
eigenstates of the system (neglecting incoherent loss, and
setting the origin of the energy scale to ωa) have a simple
and well-known form:82 two are split in energy by λ N

0
= ±,

where  =
√∑N

j=1 g2
j , while the other N − 1 are degenerated

and equal to 0. The corresponding eigenstates are

∣∣λ N
0

〉 = 1√
2

⎛
⎝ N∑

j=1

gj


|0,Xj 〉 ± |1,0〉

⎞
⎠ , (6a)

|λj−1〉 = 1

j

(g1|0,Xj 〉 − gj |0,X1〉), (6b)

with j =
√
g2

1 + g2
j , with j ranging from 2 to N for the

degenerate eigenstates in Eq. (6b). From this solution we can
see that only the |λ N

0
〉 states have a contribution from the cavity

photons. The cavity mode does not contribute to the other states
|λj−1〉, which are called, for this reason, dark states. They
consequently cannot be probed in the cavity spectrum Sa(ω),
but they can be very well seen in the excitonic radiation channel
or in a mixture of all radiation channels. These superpositions
also give rise to the phenomena of sub- and superradiance,
first reported by Dicke.83 This is essentially a classical effect
that is also observed with vibrating strings. Recently, such
configurations have been analyzed in the microcavity QED
context by Temnov and Woggon84 and Auffèves et al.,47

who studied the photon statistics, and by Poddubny et al.,40

who studied the photoluminescence line shapes. The latter
authors found that this classical regime is particularly fragile
with regard to incoherent pumping since dark states, being
also excited by pumping, act as a long-lived reservoir for
bright states from higher manifolds. They also analyzed the
regime of very high excitations, when the system is (or is
going toward) lasing. They observe in such a case that, due
to the predominance of the Dicke states that are the most
highly degenerated, the cavity spectrum is either oddly or
evenly peaked depending on the parity of the number of
strongly coupled dots, which is a strong manifestation in a
readily measured observable of the underlying microscopic
configuration. The former authors also report oscillations in
the statistics with parity of the number of emitters. In the
following, we address particular cases of larger than one,
but still small numbers of dots, and show how, in the linear
regime, photoluminescence spectra vary greatly in a qualitative
way because of the contribution or suppression of the dark
states. We confirm that these states are quickly spoiled with
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FIG. 7. (Color online) Emission spectrum from the radiation channel of the first exciton S1(ω), the second exciton S2(ω), the cavity mode
Sa(ω), and the eigenstates for a strongly coupled system of two excitons and the cavity mode. The eigenvectors of the three eigenstates |λ2〉, |λ1〉,
and |λ0〉 of the coupled system display the contributions of the individual quantum states |1,0〉, |0,X1〉, and |0,X2〉 to the specific eigenstate.
Parameters: same as in Fig. 2 with identical pumping of the dots.

increasing pumping40 and show that they give rise to nonlinear
quantum features, which also manifest in strikingly different
ways depending on the radiation channel that is probed.

A. Two emitters

In the case of two emitters coupled to a single cavity mode,
the eigenfrequencies in the linear regime can be obtained
by solving the eigenvalue problem given by the following
equation:

i
∂

∂t

⎛
⎝ 〈a〉

〈σ 1
−〉

〈σ 2
−〉

⎞
⎠ =

⎛
⎝ ω̃a g1 g2

g1 ω̃1 0
g2 0 ω̃2

⎞
⎠

⎛
⎝ 〈a〉

〈σ 1
−〉

〈σ 2
−〉

⎞
⎠ , (7)

where ω̃a = ωa − i�a/2 and ω̃j = ωj − i�j/2, with �a =
γa − Pa , and �j = γj + Pj . From the eigenstate of the emis-
sion eigenfrequency we can obtain the degree of mixture of
each peak in the spectrum, i.e., the strength of the contribution
of the cavity mode, QD1 exciton and QD2 exciton, to each
individual eigenstate.

In Fig. 7, we investigate a system of two excitons in
different QDs simultaneously coupled to one cavity mode in
the linear regime. We compare the emission spectra obtained
via the radiation channel of the first exciton S1(ω), the second
exciton S2(ω), and the cavity mode Sa(ω). In the spontaneous

emission regime, while all three radiation channels exhibit
a markedly different emission spectrum, the most striking
difference can be found in Sa(ω), where one of the emission
lines vanishes completely. This occurs when subradiance sets
in, and it follows for the case of two emitters from an
analysis of the eigenvectors similar to that of Ref. 19. The
plot of the eigenvectors in Fig. 7 presents the contributions
of the three quantum states |1,0〉, |0,X1〉, and |0,X2〉 to the
three eigenstates |λ2〉, |λ1〉, and |λ0〉 (as marked in the plot of
the eigenstates) of the coupled system. While |λ2〉 and |λ0〉
have contributions from all three quantum states at resonance,
for the eigenstate |λ1〉 the contribution from |1,0〉 goes to zero
due to destructive interference.

A measurement of this kind would also be possible for
the system just described, but when the two exciton lines
anticross out of resonance from the cavity mode, similar to
that discussed in Ref. 19. In Fig. 8, we plot the emission
spectrum from the radiation channel of the cavity mode Sa(ω),
and the eigenstates of such a system. Probing the cavity
emission, one of the emission lines vanishes, similar to the
case in Fig. 7, but this time when the two excitons are crossing
out of resonance from the cavity mode. In this situation the
eigenvalues and eigenstates have also a simple form, λ1 = 
,
λ 2

0
= 
/2 ±

√

2 + 4(g2

1 + g2
2)/2, with 
 = ω1 − ωa being

the mutual detuning from the cavity mode. In this case, the
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FIG. 8. (Color online) Emission spectrum from the radiation
channel of the cavity mode Sa(ω), and eigenstates for a strongly
coupled system of two excitons and the cavity mode where the two
excitons cross out of resonance from the cavity mode. Parameters:
same as in Fig. 7.

eigenstates are

∣∣λ 2
0

〉 = 1√(
λ 2

0

)2 + 2
2

(
g1|0,X1〉 + g2|0,X2〉 − λ 2

0
|1,0〉),

|λ1〉 = 1

2
(g1|0,X2〉 − g2|0,X1〉). (8)

Again, since the contribution from the cavity mode to this
particular eigenstate (|λ1〉) goes to zero, it cannot be probed
by the cavity radiation. The plot of all three eigenstates,
however, clearly shows the anticrossing behavior of the two
excitonlike states when they come into resonance detuned
from the cavity mode.19 The disappearance of the second
peak during the anticrossing of the excitons brings a clear
signature of a collective strong coupling with the two dots
and that this is probed in the cavity radiation channel only.
This phenomenon should also have been present in the
experiment of Ref. 19, with a numerically extracted splitting of
≈10 μeV. However, due to experimental limitations (resolu-
tion of the monochromator �R = 18 μeV) and high rates of
dephasing (γ φ

QD = 10–20 μeV), neither the anticrossing of the
two excitons nor the disappearance of the central peak were
observable.

This interference in the linear regime persists in the
nonlinear regime, where it turns into the interference related to
coherence buildup in the system, as was the case with one dot in
the cavity (cf. Figs. 5 and 6). Such interferences are, however,
now directly accessible through the cavity spectrum, whereas
they were previously only visible in the dot emission, which
is technically more challenging. This is shown at resonance
[Fig. 9(a)] and out of resonance [Figs. 9(b) and 9(c)]. The sharp
line near the origin in Figs. 9(b) and 9(c) is the exciton line
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(a)
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FIG. 9. (Color online) Spectral shapes in the cavity emission
when two dots are strongly coupled to the cavity mode. (a) With
increasing excitation (solid) the emission dip effect becomes visible in
the cavity emission. (b) It is better seen slightly out of resonance since
it can now “feed” on the line previously canceled by subradiance.
(c) Such interferences are strong even in systems that do not exhibit
spontaneous emission features (such as Rabi splitting), although
this still requires strong coupling. Parameters: g1 = g2 = g (setting
the unit), γa = g, γ1 = γ2 = 0.1g, Pa = 0; then (a) 
1 = 
2 =
0, P1 = 10−4g with (dashed) P2 = 10−4g and (solid) P2 = 0.1g.
(b) Same as (a) but for γa = 2g, P1 = 10−3g, P2 = 0, 
1 =
0 and (solid) 
2 = 0.1g or (dotted) 
2 = 0. (c) Same as
(a) but for γa = 5g, 
1 = 0 with (dotted) 
2 = 0 or (solid)

2 = 0.1g.

that appears suddenly as subradiance cancellation is destroyed
by going out of resonance; cf. Fig. 7. It results from the
interplay of subradiance and detuning, studied in Ref. 32, and
the method outlined there indeed reproduces such spectral
features in the linear regime. In the nonlinear regime, this
line also suffers from the dip carved by the cavity, where
it is sharply located. This effect is robust regardless of the
broadening of the cavity, i.e., with and without observation
of the Rabi doublet. Here again, detuning is paramount in
revealing the underlying physics, as seen in Figs. 9(b) and 9(c)
where the resonant case is superimposed as a dotted line: a
very small dip at ω = 0 is hardly visible at resonance [similar
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FIG. 10. (Color online) Luminescence spectra of the cavity in
strong coupling with one QD and in weak coupling with another
QD, in the cases where (a) the strongly coupled dot or (b) the
weakly coupled dot is excited. In the latter case, the effective cavity
pumping from the weakly coupled, or spectator, QD allows to resolve
a line splitting, which would not be observed if there would be
only one dot. Parameters: γa = 3g, γ1 = γ2 = g, g1 = g, g2 = g/10,

1 = 
2 = 0, with P = 0.2g on (a) the first or (b) the second
dot.

to the solid line in Fig. 9(a)], in contrast to the detuned case
that produces a significant discontinuity in the spectral shape.

The case of two emitters is also the simplest to illustrate a
possible mechanism of cavity feeding, provided by a spectator
dot which does not enter the strong-coupling dynamics but
changes the effective quantum state of the system. In Fig. 10,
we show the situation of two dots at resonance, in a system
where one dot, say QD1, is in strong coupling, while the other
dot, QD2, is in weak coupling. The cavity photoluminescence
is shown in the cases where QD1 is pumped [Fig. 10(a)] or
where QD2 is pumped [Fig. 10(b)]. In the former case, the
direct excitation of the quantum dot makes the quantum state
excitonlike and the Rabi splitting is not resolved. In the latter
case, the excitation transits by the spectator dot that emits it
by Purcell enhancement directly into the cavity, thus resulting
in a photonlike quantum state. As a result, the splitting is
resolved. The dynamics results in a photon fraction of ≈24%
when exciting directly the strongly coupled dot versus ≈ 66%
when exciting the spectator one. These values provide a line
shape in good qualitative agreement with an effective cavity
pumping.23

Well in the nonlinear regime, many dressed states are
excited that reinforce or, on the contrary, destroy the effects
just described. We show a few illustrative results, keeping in
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FIG. 11. (Color online) Emission spectrum from N = 2 dots in strong coupling with the cavity mode in the detuning configuration where
the dots drift with slopes proportional to the control parameter in the ratios 1 and 1/2, respectively, both meeting the cavity at the same
point. The left and right graphs, corresponding to standard and excellent strong coupling, respectively, are to be compared. The profusion of
dressed states in the best system and the even greater number of possible transitions between them give rise to the crowded set of lines in the
dot emission, featuring both crossing and anticrossing of the lines. The figure is also to be compared with Fig. 12 with a different detuning
configuration, realizing in particular a qualitatively different profile of the cavity emission in the case γa = 0.5g.
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FIG. 12. (Color online) Same as Fig. 11 but for a different configuration of detuning, with one QD always at resonance and the other tuning
through with slope proportional to the control parameter. The profile varies topologically in the cavity emission of the less strongly coupled
system, which is the case of easiest experimental access.

mind that there is a wealth of other possible configurations
that give rise to possibly greatly different results. To bring
some perspective into which parameters affect more crucially

the outputs, we compare both the case of various strengths of
the coupling and the case of various detuning configurations.
Namely, we compare the case of state-of-the-art cavities on the
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FIG. 13. (Color online) Emission spectra from N = 2 dots in strong coupling with the cavity mode in the case γa = 0.1g, at resonance
and as a function of increasing pumping. The nonlinear regime breaks the subradiance in the cavity emission and the central peak appears,
followed by quantum nonlinear features, and ultimately the system goes toward lasing, with characteristic features such as the emergence of a
single narrowing line in the cavity emission and of an emerging Mollow triplet in the dot emission.
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FIG. 14. (Color online) Same as Fig. 13 but for a lower Q system, with γa = 0.5g. Increasing pumping also breaks subradiance and lets
the central peak appear in the cavity emission. In this case, however, quantized nonlinearities cannot be resolved and the system requires higher
pumping to show signatures of lasing in the cavity emission. The transition is therefore merely that from a doublet to a triplet that ultimately
collapses to a single line in the cavity, and of a singlet to a triplet in the dot emission.

one hand, with γa = 0.5g, and of very high Q cavities on the
other hand, with γa = 0.1g. The latter enables us to see clearly
the various transitions in a system where dressed states are well
defined in isolation, while the former shows how their inter-
ferences contrive to alter this picture in a less good, but also
more realistic system. For anticrossing results, we consider
two configurations of detunings, again to be compared between
each other. These are displayed in Figs. 11 and 12. In the first
case, the two quantum dots drift along a different slope with
the control parameter. In the second case, only one dot drifts
while the other one stays pinned at resonance with the cavity.
The spectra at resonance (when the control parameter is zero)
are therefore the same in Figs. 11 and 12. The overall density
plot, however, displays qualitatively different behaviors with
small detuning, when γa is not very small (left column). In
one case (Fig. 11), the conventional anticrossing scenario of
Fig. 2 is essentially reproduced with two dots that approach
the cavity and give rise to level repulsion in the presence of
the cavity mode. In the other case (Fig. 12), the Rabi doublet
stays robust as the dot approaches and gets transferred on the
side opposing the drifting dot as it gets in resonance. The two
configurations vary in a qualitative way since the connections
between the three lines far from resonance are topologically
different. There are two pairs of meeting points in Fig. 11,
where the line shape becomes a doublet, while there are none
in Fig. 12, where the central line remains sandwiched between
the outer lines, with which it exhibits an anticrossing. Other
detuning configurations give rise to variations on these themes.
The QD emission, which proved more rich in features that
evidence quantum nonlinearities with one QD, is, however,
with N = 2, more uniform in its phenomenology, exhibiting
less variety of shapes and patterns beyond different weighting
of the lines. In particular, the anticrossing pattern is closer
to that of the linear regime. When γa is very small (right
column), the luminescence becomes extremely complicated
and overcrowded with lines in the dot emission, stemming
from all the possible transitions between the dressed states

that are all allowed, as in the case of one QD. In the cavity
emission, however, the cavity selection rules result in a much
neater luminescence profile that, when dressed states do not
interfere significantly, turns out to be quite similar regardless
of the detuning configuration.

Back to resonance, we now link the two limiting cases just
described, going from the linear to the nonlinear regime, by
considering luminescence in both channels of emission as a
function of increasing pumping. This is shown in Figs. 13 and
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FIG. 15. (Color online) Emission spectrum from the radiation
channel of the cavity mode Sa(ω) and the eigenstates of a strongly
coupled system with N = 5 QDs. Parameters are the same as in
Fig. 7.
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FIG. 16. (Color online) Counterpart for N = 3 of Fig. 11, with two dots drifting with slopes in the ratio 1 and 1/2 and a third dot pinned at
resonance. The cavity emission displays both features of peak cancellation and quantum nonlinearities in the case γa/g = 0.5, and a complex
profile of crossing and anticrossing lines in the case γa/g = 0.1, akin to dot emission with N = 2. The dot emission becomes so crowded as
to lose any recognizable pattern, already for N as low as three.

14, again for the cases γa/g = 0.1 and 0.5, respectively. In
both cases, one can see the transition from the linear to the
quantum nonlinear regime, with peak cancellation as a result
of the subradiance effect. Figure 14, for instance, shows the
neat evolution of the Rabi doublet into a spectral triplet. In the
better system, Fig. 13, the same transition is seen but now also
featuring explicitly various transitions between higher excited
dressed states, thus showing the simultaneous and separate
appearance of the subradiant state and of quantum nonlinear
transitions. Note that, as compared to the case of one emitter,
the cavity emission may display a rich structure, in some cases
equally rich or richer than the quantum dot emission. Finally,
in this case, with increasing pumping, the system undergoes

lasing and in the dot emission an emergent two-atom Mollow
triplet starts to form.

B. Three emitters and beyond

One can continue the exhibits for increasing values of N ,
and we now do so for the case N = 3 or, in the linear regime,
N = 5, as in this latter case the phenomenology is easily
generalized to arbitrary values. In the linear regime, indeed, the
interference in the cavity emission due to settling of dark states
simply scales in the expected way with the number of dots: as
many lines vanish as there are corresponding strongly coupled
dots (minus one). As an example, we simulate the spectral
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FIG. 17. (Color online) Cavity emission when three dots are
strongly coupled to the cavity mode at low pumping with
(a) resonance and (b) one case out of resonance shown explicitly.
This case brings together most features described above: the Dicke
nonlinearities (here with N = 3), the subradiance with disappearance
of the sharp central line at resonance, and the emission dip at the cavity
mode. Note how the last feature results in the sharp horizontal line in
the density plot.

shapes of a system of five identical quantum emitters coupled
to the same cavity mode and we plot in Fig. 15 the emission
spectrum from the radiation channel of the cavity mode Sa(ω)
and the corresponding eigenvalues. At resonance, the cavity
radiation channel shows only the anticrossing of two of the
eigenstates of the coupled system, albeit with a larger splitting
corresponding to 2, as described before in Eq. (6a). In the
quantum nonlinear regime, however, the number of possible
transitions quickly renders the output hopelessly complex in its
specifics, while the main qualitative results remain essentially
the same as for N = 2, but now set in an even more crowded
environment. In Fig. 16, for instance, we reproduce the case of
Fig. 11 but with three dots. The parity effect results in an even
and symmetric distribution of peaks at resonance. In the best
system (right column), the cavity emission shows once more
that the features of the dot emission of cases with lower N ,
namely the photoluminescence lines, previously neatly packed
together and ordered, start to display the chaotic features of
disordered superpositions with both crossing and anticrossing.
We conclude with another variation of the N = 3 case, shown
in Fig. 17, that dramatically brings together the two types of
strong interferences that manifest themselves in this system:
subradiance and the emission dip. This time, two dots stay
pinned at resonance while the third one is tuned through, and
we display the cavity emission with two sections at resonance
[Fig. 17(a)] and slightly out of resonance [Fig. 17(b)] for the

case γa = g. In both cases the emission dip is seen at ω = 0
(in the form of a white horizontal line in the density plot).
The Rabi doublet, now at ±√

3g, is visible but is dominated
by transitions of multiply excited states, so we are clearly far
from the linear regime. Subradiance is however robust, and a
small detuning breaks it just like in the linear case, resulting
in the dot eigenstate suddenly showing up as a very sharp and
strong peak that actually dominates most of the density plot
profile. These features are magnified by an asymmetry in the
pumping rates, namely P2 = 10−2g and P1 = P3 = 0. These
results show again how the main trends can take on varying
forms depending on the specific parameters.

V. CONCLUSIONS

We investigated theoretically the spectral shape of the
emission from N QDs strongly coupled to a single mode of
a microcavity. The emission spectra obtained from the two
different radiation channels offered by the cavity and direct
quantum dot emission were compared, both in the linear and
nonlinear regime, in and out of resonance. In the spontaneous
emission regime, dark states forming at resonance result in
a vanishing of spectral lines in the cavity emission only. As
the level of excitation is increased and multiple-photon effects
become important, dressed states enter the picture. These are
difficult to observe in state-of-the-art experiments where the
splitting-to-broadening ratio does not allow them to be clearly
resolved. Although strong coupling is maximum at resonance,
we find that the study of detuned systems can provide a
route to reveal the quantum nonlinear features. Moreover, here
too dot emission behaves qualitatively differently from cavity
emission. As excitation is further increased and a large number
of cavity photons is generated (the system enters lasing),
another interference due to onset of coherence takes place. This
manifests itself as an emission dip that results from coherent
and elastic scattering between the modes. In some cases, many
of these effects can be seen together. A plethora of phenomena
thus remain to be observed in these systems. One can access it
either by detecting direct dot emission—which is technically
difficult—or by considering strong coupling involving more
than one emitter. In both cases, detuning is a powerful tool
to unravel this new physics, since, although optimal, strong
coupling is balanced and/or hidden at resonance.
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4S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp,
J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V.
Ponomarev, and T. L. Reinecke, Opt. Lett. 31, 1738 (2006).

5K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature,
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125302 (2009).
35C. A. Vera, A. Cabo, and A. González, Phys. Rev. Lett. 102, 126404

(2009).
36G. Tarel and V. Savona, Phys. Rev. B 81, 075305 (2010).
37P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, Phys.

Rev. Lett. 104, 157401 (2010).
38U. Hohenester, Phys. Rev. B 81, 155303 (2010).
39S. Ritter, P. Gartner, C. Gies, and F. Jahnke, Opt. Express 18, 9909

(2010).
40A. N. Poddubny, M. M. Glazov, and N. S. Averkiev, Phys. Rev. B

82, 205330 (2010).
41G. Yeoman and G. M. Meyer, Phys. Rev. A 58, 2518

(1998).
42S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato,

L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, Phys.
Rev. Lett. 96, 127404 (2006).

43E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, Phys. Rev. B
76, 235317 (2007).

44C. A. Vera, N. Q. M, H. Vinck-Posada, and B. A. Rodrı́guez,
J. Phys. Condens. Matter 21, 395603 (2009).

45E. del Valle, e-print arXiv:1007.1784 (unpublished).
46P. C. Cárdenas, N. Quesada, H. Vinck-Posada, and B. A. Rodrı́guez,

J. Phys. Condens. Matter 23, 265304 (2011).
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