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We discuss two-photon physics, taking for illustration
the particular but topical case of resonance
fluorescence. We show that the basic concepts of
interferences and correlations provide at the two-
photon level an independent and drastically different
picture than at the one-photon level, with landscapes
of correlations that reveal various processes by
spanning over all the possible frequencies at which
the system can emit. Such landscapes typically
present lines of photon bunching and circles of
antibunching. The theoretical edifice to account
for these features rests on two pillars: (i) a
theory of frequency-resolved photon correlations
and (ii) admixing classical and quantum fields.
While experimental efforts have been to date
concentrated on correlations between spectral peaks,
strong correlations exist between photons emitted
away from the peaks, which are accessible only
through multi-photon observables. These could be
exploited for both fundamental understanding of
quantum-optical processes as well as applications by
harnessing these unsuspected resources.

This article is part of the theme issue ‘Celebrating
the 15th anniversary of the Royal Society Newton
International Fellowship’.

1. Introduction
Quantum mechanics is notorious for its quantized
spectral lines. This is how the theory was born and
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the fact after which it is named, following Bohr [1]’s quantization of angular momentum of
the electron orbitals in the hydrogen atom. This provided Rydberg’s constant as a product
of fundamental constants and explained the lines as transitions between energy levels (figure
1a). At about the same time, a much less resounding finding was recorded in a bulletin of
the Lowell Observatory: a nebula in the Pleiades was observed to have a completely continu-
ous spectrum of emission [2]. There are many ways to produce a continuous spectrum, from
unbound charges to, as was the case here, scattering from a broad spectrum (the light from the
star Merope). Systematic and careful observations revealed that emission nebulae (in particular
planetary nebulae), which do not reflect but emit light directly, also feature a continuous
spectrum in addition to the spectral lines of what was by then well-established quantum theory
[3]. One part—the Balmer continuum—could be explained with the known mechanisms from
reflection nebulae, but on the other side of the Balmer limit, sitting with the quantized spectral
lines in the visible spectrum, lay a continuum spectrum which was of unknown origin [4]. This
was simultaneously and independently resolved in 1950, from both sides of the iron curtain
[5,6], as a fitting companion to Bohr’s model of quantum jumps in the form of a two-photon
emission from the metastable 2s1/2 shell of the hydrogen atom down to the ground state 1s1/2

(figure 1a). Would the atom be excited in the 2p level, it would undergo a normal, ‘Bohrian’
transition back to the ground state, but the 2s–1s is dipole forbidden so it has to go through the
next (quadrupole) order, which is however very weak, and, in ambient conditions, is knocked-
off by collision back into a radiative state. In the extremely rarefied cosmic conditions, however,
there is plenty of space as well as enough time to have isolated hydrogen atoms left stuck in
great quantity in their 2s state. For those, the next best route back to 1s is the ‘Doppelemission’
(double-emission or two-photon emission) theorized by Göppert Mayer [7] and first applied to
hydrogen by Breit and Teller [8]. Although a higher order process, it is not dipole forbidden and
finds in outer space the ideal quiet laboratory conditions making possible its direct observation,
indeed giving it the name of ‘visual continuum’. The Earth-based laboratory is less auspicious
for a direct (visual) observation of two-photon emission [9], but the process nevertheless opened
the multi-photon page of atomic physics [10]. Such two-photon transitions have, among other
things, been generalized to link any (n, l,m) states of the atom [11] and can be stimulated with a
laser [12]. In the solid state, the opposite regime of the interstellar one can be realized with high
populations in small volumes, e.g. in semiconductors, where delocalized electrons in the crystal
under high laser excitation can jump the bandgap in sufficient amount to produce a measurable
and even controllable two-photon continuous spectrum [13]. Another solid-state approach is
to inflate the light-matter coupling by focusing light onto the emitter, to make higher order
processes ‘less smaller’ and thus lift their ‘forbidden’ character, possibly making them even
comparable to first-order processes [14].

Here, we present a quantum optical alternative to the quantum electrodynamics descrip-
tion. The latter typically relies on a perturbative treatment of the two-photon processes of
a complex system: the hydrogen atom in its simplest case, up to an interstellar ionized gas
bathed in the radiation of other astronomical objects. Instead, we consider the exact treatment
of a simple system, namely, resonance fluorescence, i.e. the photon emission (fluorescence)
of a two-level system driven at the same energy as it is excited (resonance). This will allow
us to focus on the two-photon physics itself, instead of interesting but secondary problems
specific to hydrogen or to the thermodynamics of nebulae. While we invoke a variety of our
results collected over the last decade, we try to keep the discussion self-contained with no
need of prior familiarity with our earlier works on, mainly, frequency-resolved multi-photon
correlations [15] or multi-photon interferences of quantum fields [16]. We furthermore connect
these two aspects to provide a new and fairly comprehensive picture of the phenomenology of
two-photon emission from resonance fluorescence, explaining features hitherto only observed.
Section 2 introduces the textbook problem of resonance fluorescence but revisited with the
‘sensor formalism’ [15], which is an alternative way to compute spectra that will allow us, in
§3, to provide a first departure from conventional treatments, by introducing our concept of
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frequency-resolved correlations, which will put the two-photon observables on the same footing
as the one-photon ones, and explain the reason for our title of ‘two photons everywhere’. In §4,
we introduce the other pillar of our edifice: interferences of quantum fields, as underpinning
their statistical properties [16]. The basic idea, that holds with quantum states, is applied to a
dynamical system in §5, which, in spirit, is resonance fluorescence itself, but we show that the
two-photon observables are actually captured by the simpler case of a squeezed cavity, allowing
us to identify what is specific to quantum states admixtures of Gaussian states (squeezing and
coherent states) and what is to the ‘more quantum’ two-level system, to which we return in
§6 with a focus on detuning. We provide a surprisingly compact expression for two-photon
correlations in this case, that is exact to leading order in the driving and captures its main
phenomenology. In §7, we show how our approach gives way to countless variations, even if
remaining at the level of resonance fluorescence, although this could and should be extended
to all possible quantum emitters. Specifically, we consider entanglement and other quantum
resources such as two-mode squeezing, which we merely exhibit but that could be similarly
explained and exploited. Our approach could also usefully revisit closely related problems such
as two-photon absorption [17], two-photon resonance fluorescence [18] or two-photon gain [19].

2. Resonance fluorescence
Resonance fluorescence is the simplest problem of quantum optics, yet a still actively investiga-
ted one. Its Hamiltonian in the rotating frame of the laser is (with ℏ = 1)

(2.1)Hσ ≡ Δσσ†σ + Ωσ(σ† + σ),

+

dipole

forbidden
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Figure 1. (a) Old quantum mechanics: transitions between quantized orbitals of the electron lead to a quantized spectrum.
Transitions to n = 2 form the visible (Balmer) series. The 2 1 (Lyman) is in the ultraviolet. The 2s 1s is, however,
dipole forbidden, but it can occur with a continuum of two-photon emission, which falls again in the visible range.
(b) Transitions between dressed states ±  lead to a triplet (Mollow) spectrum. A two-photon, so-called leapfrog, transition
can also occur that jumps over an intermediate state. However weak is this transition, it can be revealed by two-photon
correlations. (c) In the low-driving limit, detuning makes the same physics take another turn, with the triplet now formed by
the Rayleigh scattering as the central peak and (d) breaking the leapfrog over one real-state transition but keeping the other
one virtual, accounting for the two side peaks. This results in a rich two-photon physics beyond the side peaks, not visible in
photoluminescence but revealed in the two-photon correlation spectrum.
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where σ is the annihilation operator of a two-level system driven coherently by a laser with
amplitude Ωσ ∈ ℝ, and Δσ is the detuning from the laser frequency ωL, which we shall
take as the reference, i.e. ωL = 0. This problem provides a rich quantum-optical playground,
from essentially two regimes of excitation: at low-driving (so-called Heitler regime [20]), the
spectrum is dominated by the Rayleigh-scattered light of the laser, while at high-driving
(so-called Mollow regime [21]), there is a splitting of the spectral shape into a triplet (figure
1b). While these two regimes are very different in character, we can find a first unifying theme
through large detuning. When the laser drives the system far from its resonance frequency
(although still referring to ‘resonance fluorescence’), the spectral response remains a symmetric
triplet. This is shown at the top of figure 2 for: (i) the Mollow triplet at resonance, (ii) the
detuned Mollow triplet with an increasingly bright coherent peak sitting on top of a dim
fluorescent one, and (iii) the detuned (Heitler regime of) resonance fluorescence with vanishing
fluorescent contributions. The driving Ωσ has been chosen so that the spectral position of

the side peaks is the same in units of the Mollow splitting Ω+ ≈ Δσ2 + 4Ωσ2 (at large enough
detunings). The frequency ω is normalized to this splitting, i.e. ϖ ≡ (ω − ωL)/Ω+. The central peak
is either (figure 2a) a fluorescent (broad) peak, (figure 2c) the Rayleigh-scattered coherent peak
(intense and narrow central peak, note that the side peaks are magnified by a factor 800) or
(figure 2b) an admixture of a fluorescent and coherent peaks.

One can conveniently derive such results with our sensor formalism [15], which is an
alternative to formal results that rely on mathematical structures of the problem—such as the
quantum regression theorem or the Wiener–Khinchin theorem—to obtain instead observables
from a physical modelling of what is being measured. This was developed to extend the
physical spectrum of Eberly and Wódkiewicz [22] to N-photon observables, which instead of
computing awkward multi-time, normally ordered integrals, simply attaches to the system
‘sensors’ (two of them for two-photon correlations, N sensors in general) and computes
correlations directly from their usual quantum averages. Technically, this requires to ‘plug’
to the Hamiltonian of the system (in our case, equation (2.1)), the sensors, themselves most
simply described as two-level systems ςi whose frequencies ωi define which frequencies are
being ‘measured’. The name ‘sensor’ was chosen as opposed to ‘detector’ since correlations are
obtained in the limit ϵ 0 of their vanishing coupling to the system, thereby not affecting its
dynamics. This restricts their use to correlations as opposed to signal. Alternatively, one can
also use the ‘cascading systems’ [23,24], which was shown in [25] to be equivalent to the sensor
method and to conveniently substitute it in cases where the signal is needed, e.g. to perform
frequency-resolved Monte Carlo simulations [25]. For resonance fluorescence, the augmented
Hamiltonian thus reads:

(2.2)Hσ; ς ≡ Hσ + Δ1ς1†ς1 + Δ2ς2†ς2 + ϵ ∑i = 1, 2
(σ†ςi + ςi†σ) .

In the rotating frame of the laser, the frequencies Δi ≡ ωi − ωL are simply ωi since ωL = 0. As a
quantum-optical problem, one should include dissipation, which can be provided by a master
equation in the Lindblad form, so that the dynamics for the full density matrix ρ—of the system
itself as well as its sensors—is governed by the equation

(2.3)∂tρ = − i[Hσ, ρ] +
γσ
2 Lσρ + ∑j = 1, 2

γj
2 Lςjρ,

where the Lindblad terms are of the form ℒcρ ≡ 2cρc† − c†cρ − ρc†c for any operator c. Impor-
tantly, in addition to the decay rate γσ of the two-level system, we also bring the decay rate γi of
the ith sensor, that describes its frequency bandwidth. For two-photon observables (and higherN), such a parameter is mandatory for a physical description of the system, unlike one-photon
observables like the power spectrum, which can be well described for a vanishing linewidth of
their detector (recovering the Wiener–Khinchin result). In the following, we shall assume the
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Figure 2. The two-photon physics of resonance fluorescence. Top row: photoluminescence spectra for (a) the Mollow triplet
at resonance, (b) the detuned Mollow triplet and (c) the detuned Heitler triplet. The coherent (scattered) light is shown
in yellow. Second row: two-photon correlation spectra gΓ

(2)(ϖ1,ϖ2) for the corresponding spectra, with bunching in red,
no-correlation in white and antibunching or no-coincidence emission in blue. Two sets of features dominate the landscape:
straight lines of bunching (red) and circles of antibunching (blue). Lines result from multi-photon transitions that involve
virtual photons—‘leapfrog processes’—while circles result from self-homodyning destructive interferences. Three bottom
rows: covariance I 0 (third row), anomalous two-photon moments I 1 (fourth) and squeezing I 2 (bottom) which sum

together with 1 to the two-photon spectrum according to equation (4.14). The right column, that is squeezing dominated, is
well approximated by equations (6.8). Shaded regions refer to negative quantities. Parameters: γσ = 1 (setting the unit) and
Γ = 2 everywhere, while (Δσ, Ωσ) = (a) (0, 40.05), (b) (60,26.53) and (c) (80,2).
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same frequency resolution for both sensors, i.e. γ1,2 = Γ, which we shall refer to as the ‘filter
width’ as this also corresponds to placing an interference filter before an ideal detector. The
sensor method allows us to obtain the luminescence spectrum SΓ(ω) = Γ

2πϵ2 ⟨ς†ς⟩(ω) (no index

needed since a single sensor is enough) as the population of the sensor ς placed at the frequencyω, which is a mere parameter in equation (2.2) as opposed to a physical observable and thus an
operator, which would complicate very much the treatment. In particular, note that we need not
invoke any quantum-regression theorem, Fourier transform, etc. For resonance fluorescence,
the spectral shape has a simple, characteristic structure:

(2.4)SΓ(ω) = | ⟨σ⟩|2L Γ(ω) + ⟨σ†σ⟩ − | ⟨σ⟩|2 M Γ(ω)

where

(2.5)⟨σ⟩ =
2Ωσ(2Δσ + i γσ)γσ2 + 4Δσ2 + 8Ωσ2 and ⟨σ†σ⟩ = 4Ωσ2γσ2 + 4Δσ2 + 8Ωσ2

are the coherently scattered field ⟨σ⟩ (with intensity the modulus square of this) and
the total population ⟨σ†σ⟩, including the coherent part, so the incoherent part alone is⟨σ†σ⟩ − | ⟨σ⟩|2 = 32Ωσ4 /(γσ2 + 4Δσ2 + 8Ωσ2)2 (this happens to be 2⟨σ†σ⟩2). Note that these are not Γ

dependent. They weight, respectively, a central Lorentzian peak L Γ(ω) ≡ 1
π

Γ/2
(Γ/2)2 + ω2  and a

symmetric triplet (both normalized), whose expression is a bit more involved:

(2.6)MΓ(ω) ≡

2
π

(γ12
2 + 4ω2)(γ11

2 γ12 + 4γ12Δσ2 + 4γ10ω2) + 8Ωσ2(γ11γ12γ35 + 4γ12Δσ2 − 4γ12̄ω2) + 128Ωσ4γ11

(γ12
2 + 4ω2) (γ11

2 + 4Δσ2)2 + 8(γ11
2 − 4Δσ2)ω2 + 16ω4 + 32Ωσ2 γ11γ12(γ11

2 + 4Δσ2) + 4(γ01γ11 + 4Δσ2)ω2 − 16ω4 + 256Ωσ4(γ11
2 + 4ω2)

where we use the notation γij ≡ iΓ + jγσ for any integer i, j, with also ȷ̄ ≡ − j so, e.g. γ35 = 3Γ + 5γσ.
The expression is not particularly enlightening but it is completely general, including the
Mollow triplet and Heitler regime, at and out-of resonance, also with the effect of detection Γ.
An even more complete (with incoherent pumping and dephasing) version of this expression
for the ‘physical spectrum’ of resonance fluorescence is available as a self-standing applet [26].
At any rate, its shape is simple: it is a triplet which maintains a perfect symmetry around the
laser frequency set here at ωL = 0, whose interpretation in the various regimes of driving is
given in figure 1b,c. In both cases, Bohr’s insight provides a discerning picture of the otherwise
mysterious spectral features of resonance fluorescence. At high-driving, the so-called ‘dressed
atom’ picture considers quantum jumps between the dressed states ± ≡ c± g ± c∓ e  of a

two-level system g  and e  dressed by photons from a driving laser, with c± ≡ (1 + ξ∓2)−1/2

and ξ ≡ Ωσ/[ Ωσ2 + (Δσ/2)2 + (Δσ/2)]. The central peak, at frequency ω0, is twice as bright as the
side peaks ω± due to two degenerate transitions + +  and − − . At low driving, now
looking at the system in its bare states, a detuned laser does not make it to the excited state
and so is restrained chiefly to Rayleigh (energy-conserving) scattering. However, involving two
laser photons, one can match the energy ωσ of the emitter with the excess energy ωv ≡ 2ωL − ωσ
(either smaller or larger than ωσ depending on detuning), forming an exactly symmetric peak.
This perceptive physics is well-known since the 1980s, thanks to Reynaud et al.’s insights [27–
29]. Its understanding has little evolved since then [30].

Since the photoluminescence spectrum is a single-photon observable, one could consider a
vanishing detector bandwidth Γ 0 (replacing γij by jγσ), in which case one sees a tightening
of the lines, in particular, the coherent Lorentzian lim

Γ → 0
L Γ(ω) becomes a Dirac δ(ω) function

that reflects the vanishing linewidth of the laser treated as a c number (Ωσ) in equation (2.1).
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The effect of detection is thus a mere (and expected) broadening of the lines, which does
not qualitatively alter the spectral shape. The case of Heitler resonance (Ωσ ≪ γσ and Δσ = 0)
has attracted deserved but unwary attention. A short discussion will allow us to motivate the
significance of detection, to which the sensor formalism gives utmost importance. The spectrum
(equation 2.4) reduces in this case to:

(2.7)SΓ(ω) = 4Ωσ2γσ2 1 − 16Ωσ2γσ2 L Γ(ω) + 8Ωσ2γσ2 2
π
γ12γ11

2 + 4Γω2

(γ11
2 + 4ω2)2

and, again, the Γ 0 appears to be a straightforward and good-enough approximation of the
main features:

(2.8)S0(ω) = 4Ωσ2γσ2 1 − 16Ωσ2γσ2 δ(ω) + 8Ωσ2γσ2 πγσL γσ2 (ω)

in fact making them particularly transparent, namely, as long as Γ ≤ γσ (sub-natural linewidth
resolution), given that Ωσ2 ≪ γσ2 , the spectrum is essentially a very narrow central line sitting
on a weak (32(Ωσ/γσ)4) and broad (γσ) spectrum. This scenario can be seen for the central peak
in figure 2b. The fluorescent spectrum is, to leading order, the square of a Lorentzian, exposing
its two-photon origin. This expression corrects the erroneous Eq. (3) in [31]. The impact of the
detector in equation (2.7) is merely to contribute a quite innocuous broadening: one can take
better and better detectors and converge to the ideal limit equation (2.8), which is essentially
4Ωσ2 /γσ2 δ(ω), so it would appear that we are merely discussing technical issues. That is so, at

the one-photon level. Two-photon observables, however, behave differently, at least, if taken
in their entirety. The complete quantity should retain both the frequencies ω1 and ω2 as well
as the times of detection t1 and t2 of both photons, or, in a steady state, the time differenceτ = t2 − t1 . We will introduce it in the next section, but for now, to compare with the results
found in the literature, we assume both frequencies to be that of the emitter ω1 = ω2 = ωσ , itself
at resonance with the laser frequency ωL , in which case the sensor formalism provides us withgΓ

(2)(τ) = ς1†(0)(ς2†ς2)(τ)ς1(0) / ς1†ς1 ς2†ς2  which evaluates to

(2.9)gΓ
(2)(τ) = e−(Γ + γσ)τ/2 +

Γγσ
Γ2 − γσ2e−Γτ/2 − Γ2

Γ2 − γσ2e−γστ/2
2

,

(the limit Γ γσ gives gγσ(2)(τ) = 1 + (γστ)/2
2 e−γστ/2 − e−γστ 2

). The most natural way to neglect

frequencies is to detect them all, which corresponds to taking the limit Γ ∞, in which case one
recovers the result from the literature [32]:

(2.10)g∞(2)(τ) = (1 − e−γστ/2)2 .

This describes an excellent single-photon source (in particular with a flattening ≈ (γστ/2)2 at
small delays τ around g(2)(0) = 0, characteristic of superior single-photon emission [33]). That is
to say, one apparently has a bright very narrow—equation (2.8)—and antibunched—equation
(2.10)—source. This is thanks to various ingredients contributing their respective benefits: the
laser brings the narrow linewidth while the two-level system brings the single-photon emission.
But in this listing of great properties, which have been experimentally demonstrated [34,35],
one is using different and in fact incompatible configurations, namely, Γ 0 for the spectrum
and Γ ∞ for the antibunching. In the laboratory, separate characterizations, overlooking the
impact of Γ, have been performed of the system, thereby omitting the crucial adversative
conjunction ‘or’ in describing an ‘ultra-coherent or single photon source’ [34] and ‘subnatural
linewidth or single photons’ [35]. This oversight shows that Γ is not a mere technical concern
but a central consideration. If working directly with equation (2.7) instead of the textbook
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limits, then the intrinsic limitations imposed by detection become obvious. The difficulty is
that one needs a large enough bandwidth Γ so as to have sufficient integration time to resolveg(2)(τ) while also having a small enough bandwidth to have a good frequency resolution and
not suffer too much broadening. When using the wrong limit for each observable, one indeed
gets the worst result possible, namely, S∞(ω) vanishes as the spectrum becomes constant over

(−∞, +∞) since photons are emitted at all possible frequencies, while g0
(2)(τ) = 1 and all correla-

tions are lost. Uncorrelated emission corresponds in fact to an ideal laser: a physical laser has
a linewidth, and filtering below that linewidth goes to the thermal limit g0

(2)(τ) = 2! [36], at any
rate, the single-photon correlations are completely lost. Presented in these terms, it would seem
that the time/frequency incompatibility occurs at the Fourier level and is thus unavoidable.
But this could be easily circumvented merely by replacing the source with one that is more
spectrally narrow, i.e. by reducing γσ, keeping the same antibunching with a broader-than-natu-
ral linewidth of the substitute emitter, but still narrower than the original one: in this way, one
can realize arbitrarily narrow and antibunched source, showing that there is no fundamental
limitation, only a technical one of finding the suitable emitter. In fact, even the sub-natural
linewidth can be realized simultaneously with antibunching, provided a small, but crucial,
variation of the experiments [31]. One first needs to understand the nature of antibunching
in this system, which, as we said, comes from the two-level system. Or does it? Because
driving is weak in this regime, the saturation of the two-level system is not actually needed,
in contrast to incoherent excitation where truncation of the number of excitations is crucial.
Here, a weak nonlinearity would work as well since the antibunching arises in this case from
a two-photon approximation of squeezing antibunching [37] (this is an approximation because
there is also three and higher-order antibunching which a squeezed state cannot provide).
Squeezing and antibunching have a long shared history of joint appearances, initially with
little appreciation of their interconnectedness [17,38,39]. This is in this way that they have been
independently theorized [40,41], sought [32,42] and ultimately discovered [43,44] in resonance
fluorescence. In such a system, they turn out to be two faces of the same coin, namely, of wave
interferences [45]. Interferences are at the heart of both optics and quantum mechanics, so their
importance in quantum optics can only be understood as momentous [46,47]. While in classical
optics, the simplest waves are described by two parameters—their amplitude and phase—
quantum fields come with an infinite number of amplitudes for non-Gaussian states of light,
since each multi-photon component n  of the field ψ = ∑n cn n  comes with its own inde-

pendent coefficient cn. One can produce rich multi-photon correlated outputs from admixing
(or interfering) even the simplest and most popular Gaussian states [48], namely, the coher-
ent state α = D(α) 0 , defined in terms of the displacement operator D(α) ≡ exp αa† − α∗a
where α = |α|eiϕ and a the harmonic oscillator annihilation operator, so that D

†aD = a + α,
and the single-mode (quadrature) squeezed state, defined in terms of the squeezing operator

S1 ≡ exp[1
2(ξ∗a2 − ξa†2)] [49,50]. The idea is as simple as for classical optics interferences: by

fine-tuning their respective coefficients, one can realize destructive or constructive interferences
for a given component n  and thus suppress or maximize it in the output. At the Gaussian
level, this comes with strong constraints since few parameters define all the multi-photon
weights, but because such states are easily produced, they have elicited most of the interest. The
idea of admixing squeezing with a coherent state appeared very early, precisely with the aim of
producing antibunching [51] (under the name of ‘anticorrelation effect’), and in fact even before
the more straightforward idea of a two-level system being restored into its ground state [52].
It was then believed that such squeezed anticorrelations might exist in the transient dynamics
only. While antibunching from the two-level system was quickly observed [43], the one based
on squeezing took more time (and with pulsed excitation) with the signal and pump of a
degenerate parametric amplifier, producing both bunching and antibunching by varying the
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relative phase [53]. The effect was more clearly understood in terms of two-photon interferences
by Lu and Ou [54] who also realized it in the stationary regime. Now that we understand
better the origin of antibunching in resonance fluorescence [55] (as squeezing antibunching), we
can return to our hope of realizing it simultaneously with a subnatural linewidth. The loss of
antibunching [56] in resonance fluorescence is due to the interference between the incoherent
and coherent components being disrupted by the detection, which filters out the spectrally
broad incoherent (squeezed) fraction more than it does the coherent (narrow) one. One could
thus restore antibunching by correcting for this imbalance, which is an excess of coherent
state, therefore, destructive interferences with an external laser can achieve that, as was indeed
shown theoretically in [31]. Such techniques, that go by the name of ‘homodyning’, have been
demonstrated experimentally to extract the quantum part of a signal [57]. Theoretically, this
simply consists in adding a complex field α to the homodyned operator, so σ in our case, i.e.
to substitute σ α + σ for a tunable α ∈ ℂ in the Hamiltonian Hσ. We will go into the details
of this mechanism in §4 where we will generalize it to all frequencies of the system, while
our current discussion is merely its particular case for photons with the same frequency. For
now, it will be enough to note that evidences of such interferences and their effect on the
correlations were reported in independent and complementary works that tamper with either
the incoherent fraction (and thus loosing antibunching) [55,58] or on the opposite with the
coherent fraction (producing excess bunching instead) [59]. Restoring antibunching remains to
be demonstrated experimentally. At the theoretical level, our discussion so far should have
established that the detection, which manifests itself through the parameter Γ, is at the centre
of quantum-optical characterizations and should not be treated lightheartedly. A deep concept
is concealed in equation (2.9), namely, that what is being measured is truly the correlations
of photons with frequency ωL = 0, i.e. one is making a complete characterization of both the
time and frequency of the photons, which is why Γ is mandatory. What the textbook limit
Γ ∞ really does is to neglect the frequency information. This is not entirely apparent from
equation (2.9) because it seems that no other frequency than the one at which the system
emits would make sense anyway. This is not the case. Such a complete description for more
general multi-photon observables is discussed in the next section, which embarks us on another
departure with the bulk of the literature, this time not for a computational technique only, but at
the conceptual level of what it means to detect multi-photons.

3. Frequency-resolved photon correlations
When performing two-photon correlations of the emission from a quantum emitter, there is an
irresistible temptation to correlate photons that are ‘visible’ in the emission spectrum, i.e. that
originate from a spectral peak. If the emission further comes in the form of several peaks, that
invites for cross-correlating them. This is due to the persistence of the classical picture even to
the quantum opticians, despite now many decades of quantum theory telling us that quantum
states at the multi-particle level are not conditioned by their attributes at the one-particle level
[60]. This makes it conceivable that multi-photon correlations can be more pronounced or
interesting in spectral regions where the intensity (or population, i.e. a one-photon observable
of the type ⟨a†a⟩) is itself small or even negligible. One must, at the quantum level, separate
in principle quantity and quality. It is in fact, beyond conceivable, compulsory to elevate one’s
understanding of multi-photon emission to such situations where the system does not emit
at the one-photon level, but does at the two-photon one, and vice-versa. There can also be
joint intense emission of the two types, or jointly suppressed. All combinations are possible.
They are therefore conceptually disconnected. To see this, one needs a quantity to visualize
two-photon physics, which we now introduce. Such a quantity should have no such prejudice
for the spectral peaks, and treat every pair of photons the same. It should be represented on
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a two-dimensional plot as it requires two axes, one for each photon. It should also extend or
generalize already existing quantities as it is unlikely that the essence of two-photon physics
has been missed entirely, although it might well have been left incomplete. Such a two-photon
quantity we call the two-photon spectrum [61,62] or two-photon correlation spectrum, which
we define in terms of the intensity or population operator n̂(ω, t) that quantifies the amount of
quantum radiation at frequency ω at time t [15], leading to:

(3.1)gΓ
(2)(ω1,ω2, t1, t2) = ⟨:n̂(ω1, t1)n̂(ω2, t2):⟩⟨n̂(ω1, t1)⟩⟨n̂(ω2, t2)⟩ .

This is a clear generalization of Glauber’s two-photon correlation function, but retaining the
frequency information along with the temporal one. For this reason, the detector’s bandwidth
Γ is mandatory. This quantity has been considered by various authors [63–65], but it has
presented considerable difficulties and only partial results could be derived, sometimes with
inconsistencies. From the sensor formalism, however, it is easily and exactly obtained as

(3.2)gΓ
(2) ω1,ω2, t1, t2 =

ς1†(t1)(ς2†ς2)(t2)ς1(t1)
(ς1†ς1)(t1) (ς2†ς2)(t2) .

While one can consider both time and frequency (e.g. [66,67]), it will be enough for the
present text to consider coincidences of a stationary state, i.e. the case t1 = t2 ∞. This will
not diminish the main insight that in so doing, we are making a joint characterization in
time (albeit coincidences only) and frequencies. We now embrace the full picture and compute
numerically two-frequency coincidences (equation 3.2) through standard quantum averages of
the sensor method. Since frequencies are mere parameters, this allows a convenient and exact
computation of what was previously obtained at the cost of great efforts and several oversim-
plifying approximations [68,69]. The results are shown in figure 2d–f (second row), below the
corresponding spectral shapes, reproducing three notable cases from the pioneering work [62].
Unlike the top row, where SΓ(ω) could be obtained in the limit Γ 0, these two-photon spectra

would become ‘trivial’ in this limit, with g0
(2)(ω1,ω2) = 1, i.e. washing out all traces of correlations

as the detectors integrate over infinite times. The other limit is more interesting but brings
nothing new as it recovers equation (2.10), and so, at τ = 0, is identically zero. What is of
interest, clearly, is the intermediate case where a landscape of correlations is revealed. It will
be enough to limit ourselves with a description of the qualitative features, although we repeat
that the results are numerically exact, so one could study cross-sections in more quantitative
details. In our qualitative description, red colours correspond to bunching, i.e. to photons with
the respective frequencies arriving together in time, with antidiagonals of bunching in cases (d)
and (e) that correspond to the two-photon Mollow triplet. These lines indeed generalize Bohr’s
quantization condition for transitions between two energies Ei − Ej = ω, to a two-photon jump

(3.3)Ek − El = ω1 + ω2

where  the  energies  Ek  and El  are  non-contiguous in  the  energy ladder  and so  the
system effectively  ‘jumps over’  a  real  state,  for  which reason this  has  been termed a
leapfrog process  [61,62].  This  is  the  direct  quantum-optical  counterpart  of  Göpert  Mayer’s
Doppelemission with  a  few but  important  variations.  In  her  case,  there  was  nothing
to  jump over,  and the  multi-photon emission was  thus  in  a  different  frequency range,
indeed,  in  its  manifestation from nebulae  emission,  this  converts  UV 2S 1S  Lyman
photons  into  the  visual  continuum siding with  the  visible  Balmer  series  X 2S.  Higher
order  processes  fall  into  still  more  remote  spectral  windows,  while  our  leapfrog pro-
cesses,  even from three  or  a  higher  number  of  photons,  are  all  over  the  place  along
with  the  single  photons  that  one sees  in  the  spectral  shape.  The second variation is
our  reliance  on the  quantum-optical  quantity  gΓ

(2)(ω1,ω2)  (this  would be  g(n)  for  higher
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photon numbers),  which allows us  to  ‘reveal’  this  hitherto  unsuspected structure,  whose
existence  is,  again,  not  conditioned to  the  amount  of  signal,  and can be  captured by
using an adequate  two-photon observable,  which,  as  Glauber  clarified for  quantum light,
is  the  intensity–intensity  correlator  [60].  As  a  result,  one  should look for  such multi-pho-
ton emission everywhere,  not  only  when it  is  betrayed,  for  one reason or  another,  at
the  one-photon level.  In  most  cases,  it  remains  invisible  (at  the  one photon level).  The
appropriate  photon correlations  allow us  to  extract  them from a  background of  unrela-
ted or  more  intense  emission.  Another  variation is  that,  two-photon light  being more
complex than single-photon light,  it  comes with  more  characteristics,  which we capture
with colours  in  addition to  a  magnitude.  Besides  red for  bunching,  we use  white  for
uncorrelated emission,  where  the  two photons  are  emitted independently  the  one from
the other.  Interestingly,  one can see  in  figure  2d  that  such uncorrelated photons  form
a grid  of  horizontal  and vertical  lines  defined by the  (one-photon)  spectral  peaks.  This
means that  photons  from the  spectral  peaks  contribute  not  only  the  bulk,  indeed,  of  the
emission,  but  more  significantly,  the  classical  signal,  which is  independent  from the  rest
of  the  emission.  This  is  another  call  for  quantum opticians  to  seek their  photons  away
from the  peaks:  quantum photons  are  emitted where  one does  not  seem them.  This  is
because  photons  from the  spectral  peaks  are  ‘real’  photons  that  arise  from the  Bohrian
jump from one real  (here,  dressed)  state  to  another,  while  leapfrog photons  are  virtual,
in  the  sense  that  they involve  a  virtual  intermediate  state  with  energy El*  which could
be any value  in  between or  even beyond,  and thus  resulting in  a  correlated signal  for
the  entire  line  satisfying equation (3.3).  Virtual  does  not  mean ‘non-existing’  and would
one still  complain  of  no emission from outside  the  peaks,  we would retort  again  that
this  is  a  one-photon concern.  The no-emission at  the  two-photon level  is  unrelated to
no-emission at  the  one-photon one.  No two-photon emission is  in  fact  what  we encode
with  the  blue  colour  in  the  two-photon spectrum,  for  antibunching.  And one can see
in  figure  2d  how the  strongest  no two-photon emission occurs  at  (ϖ1,ϖ2) = (−1, −1)  or
(+1, +1),  i.e.  at  the  spectral  side  peaks,  where  one-photon emission is  indeed strong.
Such a  scenario  is  well  known,  as  it  corresponds to  single-photon emission.  In  contrast,
at  (ϖ1,ϖ2) = 1

2 (−1, −1)  or  1
2 (+1, +1),  one  has  the  opposite  situation of  strong two-photon

emission but  small  one-photon emission (in  fact  the  smallest  emission in  the  range
|ϖ| ⪅ 1.25),  which corresponds to  the  equally  fundamental  case  of  two-photon leaprog
emission,  which may be  even more  important  than single-photon emission,  although,
because  it  is  innocuous at  the  one-photon level,  it  failed to  attract  much attention so  far.
One must  highlight  in  this  regard the  exceptional  contributions  from the  beautiful  and
still  unique experiments  of  the  Muller  group [70–73],  who has  observed these  features
in  spectacular  agreement  with  the  theory.  Finally,  a  manifestation of  the  independent  yet
tangible  existence  of  the  two-photon physics  can be  based on arguments  of  theoretical
aesthetics:  the  robust  spectral  (one-photon)  symmetry with  detuning,  which appears  to  be
lifted at  the  two-photon level  since  the  two peaks  behave differently  in  the  two-photon
spectrum,  is  instead ‘rotated’:  the  symmetry is  with  respect  to  the  two-photon diagonal,
so  independent  from the  one-photon structure,  but  also  present  when looked at  prop-
erly.  This  needed change of  perspective,  we believe,  is  an evidence  of  the  independent
two-photon picture.  If  such arguments  fail  to  move one’s  sensibility,  and although we are
focused on the  fundamental  aspects  in  this  text,  we should then mention that  there  are
obvious  and immediate  technological  prospects  of  these  results  that  turn the  correlated
virtual  photons  into  quantum emission of  a  new type.  For  instance,  placing a  cavity  at
the  N-photon leapfrog degenerate  frequency (halfway between the  peaks  for  two photons)
would Purcell-enhance  their  emission and open a  bright  channel  of  pure  N-photon
emission [74].  This  is  clearly  another  evidence of  the  ‘existence’  of  such processes,  that
can power  devices  of  a  new type.  There  are  other  ways  to  similarly  exploit  this  hidden
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physics,  but  we wish to  return instead to  its  basic  structure,  and now focus  on the
perplexing blue  circle  cast  between the  central  and virtual  peaks,  as  seen in  figure  2f.
This  circle  is  of  a  different  nature  from the  phenomenology that  we have discussed so
far,  since  this  is  a  curve as  opposed to  straight  lines,  and suppressing photons  instead of
having them come together  as  joint  emission.  We now explain  here  for  the  first  time the
underlying mechanism for  this  circle.

4. Admixing two-mode squeezed and coherent states
Two-photon physics is primarily described by Fock states 2  in a given mode, or by non-
degenerate pairs 1112  in two modes. Next come the so-called squeezed states, which were
popularized by Walls [75] for their ability to squeeze through the uncertainty principle [76],
but were initially (and possibly, more appropriately) called ‘two-photon coherent states’ by
Yuen [77]. Because two-photon spectra correlate two frequencies (providing two continuously
varying modes), two-mode squeezing can be expected to have some relevance in the presence of
coherence, as is the case for resonance fluorescence which involves coherent driving. Two-mode
squeezing considers two bosonic modes with annihilation operators a1 and a2, and a so-called
‘squeezing matrix’ ζij (complex-valued symmetric). The two-mode squeezing operator [78]

(4.1)S2
(ij) = exp[ζijaiaj − ζij∗ai†aj†],

can be seen as a generalization of the already introduced single-mode squeezing operator

(4.2)S1
(i) = exp[1

2(ξi∗ai2 − ξiai†2)] ,

where the squeezing parameters are conveniently defined as ξi = rieiθi for i = 1, 2 and ζij = tijeiϑij
a matrix with zero diagonal elements, namely ζ12 = t12eiϑ12 with ζjj = 0 for j = 1,2. One can
squeeze the two modes independently, with the product of the single-mode squeezing
operators S1

(1)(ξ1)S1
(2)(ξ2) = S1

(2)(ξ2)S1
(1)(ξ1) (the operators commute), or squeeze them jointly with

the two-mode squeezing operator S2
(12)(ζ12), transforming annihilation operators as [78]:

(4.3)(S2
(12))†aiS2

(12) = ∑k = 1, 2
Mikak −N ikak† ,

for 1 ≤ i ≤ 2. The mixing matrix M is positive while the second mixing matrix N  can be

complex-valued. For single-mode squeezing, they are diagonal with values Mii = cosh(ri) and

N ii = eiθisinh(ri), respectively. On the other hand, for two-mode squeezing, the non-vanishing

elements are M11 = M22 = cosh(t12) and N 12 = N 21 = eiϑ12sinh(t12). This leads to the transforma-

tion rules for the one- and two-mode operators:

(4.4)(S1
(i))†aiS1

(i) =  μiai − νiai† and (S2
(12))†aiS2

(12) =  M11ai −N 12aı̄† ,

where μi = cosh (ri), νi = eiθisinh (ri), M11 = cosh(t12), N 12 = eiϑ12sinh(t12) and ı‾ ≡ 3 − i exchanges 1

and 2. Alternatively, one could use the general form of S2
(12), with structurally identical results.

The combination of these squeezings leads to a generic two-mode squeezed state:

(4.5)ξ1, ξ2, ζ12 ≡ S1
(1)S1

(2)S2
(12) 0 0 .
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For this state, it is straightforward to compute any correlator ⟨a1
†ma1

na2
†pa2

q⟩ for integers m,n,p, q
from equation (4.3). For instance, we find for the population of mode i = 1,2:

(4.6)⟨ai†ai⟩ = cosh2 risinh2 t + sinh2 ricosh2 t .

One could carry on like this and compute other correlators but since we shall be concerned in
the following with leading-order processes, we can rescale the squeezing parameters as ri → ϵ2 ri
and t → ϵ2 t for an ϵ that will be taken close to zero. In this limit, thanks to normalization, we
can give a more comprehensive list of the correlators, including the second-order correlation

functions gi(2) ≡ ⟨ai†2ai2⟩/⟨ai†ai⟩2 for i = 1,2 and g12
(2) ≡ ⟨a1

†a2
†a2a1⟩/⟨a1

†a1⟩⟨a2
†a2⟩:

(4.7a)⟨ai†ai⟩ ≈ ri2 + t12
2 ϵ4 , ⟨a1a2⟩ ≈ −ϵ2ζ12 , ⟨ai2⟩ ≈ −ϵ2ξi ,

(4.7b)gi(2) ≈ r1
4

(r1
2 + t12

2 )(r2
2 + t12

2 )ϵ4 , g12
(2) ≈ t12

4

(r1
2 + t12

2 )(r2
2 + t12

2 )ϵ4 .

Since ϵ is very small, one can see that all the two-particle fluctuations are bunched. We can,
however, produce antibunching by interfering squeezing with a coherent state, as we already
discussed for the Heitler regime at resonance. Here, we will look more closely at the general
case of interferences that involve two-mode squeezing, and show that this captures much of
the two-photon physics of resonance fluorescence. This extends to two modes the idea already
scrutinized for one mode [16,31], which admixture of coherence with squeezing results in rich
and qualitatively different correlations than those available in the squeezed or coherent states
alone. This should similarly allow us to generalize the specific technique of tuning photon
statistics with coherent fields [48] to multi-mode correlations, especially as multi-mode coherent
states are not correlated, so they can be tuned independently for each squeezed mode. From the
weak driving that defines resonance fluorescence, it is enough to deal with coherent-squeezed
states in the limit of small squeezing. Since the coherent contribution of the quantum states is
taken of the same order than squeezing, we take αi → ϵαi, meaning, however, that coherence is
stronger since it appears to first order in the admixture while squeezing is of second order. This
brings us to the fundamental object of two-photon resonance fluorescence:

(4.8)α, ξ, ζ12 ≡ D1D2S1
(1)S1

(2)S2
(12) 0 0 ,

where α ≡ (α1,α2) and ξ ≡ (ξ1, ξ2) admixes coherence and squeezing of single modes [48] along
with ζ12 that provides the general two-photon physics. Similarly as before, we can now compute
the key two-photon correlators for this state, to leading order in ϵ:

(4.9a)⟨ai†ai⟩ ≈ ϵ2|αi|2 + ϵ4 t12
2 + ri2 − 2|αi|2ricos (2ϕi − θi) − 2|α1||α2|t12cos (ϕ1 + ϕ2 − ϑ12) ,

(4.9b)⟨ai2⟩ ≈ ϵ2 αi2 − ξi , ⟨a1a2⟩ ≈ ϵ2 α1α2 − ζ12 ,

(4.9c)gi(2) ≈ 1 −
2 ricos (2ϕi − θi)

|αi|2 + ri2
|αi|4 ,

(4.9d)g12
(2) ≈ 1 −

2 t cos (ϕ1 + ϕ2 − ϑ12)
|α1||α2|

+ t12
2

|α1|2|α2|2 ,

for 1 ≤ i, j ≤ 2. As compared with equation (4.7), one can see that the correlators g(2) can now
take a much wider span of possible values, in particular, they can now be less than unity and
even vanish exactly as well as diverge to leading order. This is the two-mode generalization
of our previous single-mode admixing [48], where it was also the case that the population,
equation (4.9a), is essentially coherent, since ϵ2 ≫ ϵ4, but that, regardless of this preponderance
of the coherent state, two-photon observables are ruled by the squeezing component. Here too,
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the intensity of the squeezed photons has to be much smaller than the coherent one. The reason
is that in order to interfere at the two-photon level (to produce antibunching), the contributions
have to be of the same order, what we have achieved thanks to the parametrization. The
coherent field makes the system gain one photon, with a probability proportional to |αi|. To
climb up from vacuum to 2 , the system has to absorb two photons, one each time, so the
chances are proportional to |αi|2. On the other hand, the squeezed field carries the photons
two by two. Then, the system can directly jump from 0  to 2  by absorbing two photons
with a probability proportional to ri. To ensure that both processes compete on equal footing,
the ratio |αi|2/ri has to remain finite when the limits |αi|, ri → 0 are taken. For the two-mode
case, the interference yields the cancellation of the 1,1  state and the argument is exactly the
same just exchanging |αi|2 → |α1||α2| and ri → t12. This explains the counter-intuitive fact that
a weak incoherent fraction determines the antibunching of an intense coherent radiation [31,55].
A major departure from two-mode squeezing as compared with single-mode admixing is the
degeneracy for the conditions that realize interferences and produce extreme correlations, such
as perfect antibunching (exact zero) or diverging superbunching. Indeed, perfect anticorrelation
for a single mode is obtained when these conditions are fulfilled:

(4.10)ri = |αi|2 , 2ϕi − θi = 0 ,

while two-mode anticorrelations are maximized when:

(4.11)t12 = |α1α2| , ϕ1 + ϕ2 − ϑ12 = 0 .

Just like two-photon leapfrog transitions (cf. §3) lift the strict conservation of energy for each
photon to constrain their sum instead—allowing each photon in the pair to come with a
continuous energy [62,67]—here, the wave interference is realized for a sum of the phases,
in contrast to the single phase for a single mode [16]. This allows, again, a continuous range
of parameters to realize the quantum interference. Such admixtures can also be tracked in
any dynamical two-mode quantum state, possibly mixed with a density matrix ρ. We will
consider explicitly the case of resonance fluorescence, which is the simplest one, but of course
our discussion is general, whether the coherence is provided internally (as is the case in
resonance fluorescence where it is inherited from the coherent driving) or is added externally,
with a supplementary (homodyning) laser, a case we shall also touch upon. It could also be
developed by the system itself (e.g. when it undergoes lasing). Whatever the origin for the
various contributions, one can separate them from the whole operators ai that act on the whole
state from those a~i that act only on the fluctuations, or incoherent part. They are linked by the
relation

(4.12)ai = αi + a~i
where again ai and a~i are operators while αi is a c-number. This again generalizes our earlier
case [48] and while we limit ourselves here to i = 1,2, one could further extend it to any number
of modes. By construction, one has ⟨a~i⟩ = 0, resulting in no interferences for the intensities:⟨ai†ai⟩ = |αi|2 + ⟨a~i†a~i⟩. In stark contrast, the cross-correlator ⟨a1

†a2
†a2a1⟩ becomes⟨(a~1

† + α1*)(a~2
† + α2*)(a2 + α2)(a1 + α1)⟩. Expanding this, we get:

(4.13) ⟨a1
†a2

†a2a1⟩ = ⟨a~1
†a~2

†a~2a~1⟩ + ∑i = 1, 2
αi⟨a~1

†a~2
†a~ı̄⟩ + cc

+ α1α2⟨a~1
†a~2

†⟩ + α1α2
∗⟨a~1

†a~2⟩ + cc + ∑i = 1, 2
|αi|2 ⟨a~ı̄†a~ı̄⟩

where, again, ı‾ ≡ 3 − i. This shows that, unlike incoherent intensities, the second-order
correlation functions are the result of interferences, namely, of four terms:
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(4.14)g12
(2) = 1 + I0 + I1 + I2 ,

with

(4.15a)I0 ≡
1n1n2

⟨a~1
†a~2

†a~2a~1⟩ − ⟨a~1
†a~1⟩⟨a~2

†a~2⟩ ,

(4.15b)I1 ≡
2n1n2

Re α1⟨a~1
†a~2

†a~2⟩ + α2⟨a~1
†a~2

†a~1⟩ ,

(4.15c)I2 ≡
2n1n2

Re α1α2⟨a~1
†a~2

†⟩ + α1α2
∗⟨a~1

†a~2⟩ ,

with ni ≡ ⟨ai†ai⟩ so that in each case, I in1n2 is of order |α1|p|α2|q with p + q = i. We now have

recovered the general version of the phenomenon discussed in §2 of antibunching produced
by an interference of various contributions, which are the single-mode version of I i, i.e. witha1 = a2 = a, in which case I0 is related to the g(2) of the incoherent fraction, being −1 for non-

Gaussian (quantum) antibunching and +1 for chaotic, bunched states, while I2 is related to

squeezing, being −2 in the presence of squeezing. I1 is a measure of anomalous moments which

is negligible in the two regimes of interest, namely:

— Heitler regime, where g(2) = 0 = 1 + (I0 = 1) + (I1 = 0) + (I2 = − 2),

— Mollow regime, where g(2) = 0 = 1 + (I0 = − 1) + (I1 = 0) + (I2 = 0),

with, therefore, a completely different interpretation for how g(2) = 0 is obtained. In the general
case that we consider here, the numerator of I1 has the physical meaning of a covariance

between the incoherent fractions, being positive when both modes are occupied or depleted
together, and negative when one is largely occupied and the other depleted. Like for the single
mode, the normalization is to the total population, not to that of the incoherent fraction alone.
I2 also has some interpretation in terms of two-mode squeezing, in particular including the

coherent fractions α1 and α2. We shall disregard the exact meaning of I1 that interpolates

between the various regimes by involving anomalous correlators of the populations and order
parameters of the type ⟨a~ı̄†a~ı̄a~i⟩, also weighted by the coherent fraction αi*. We can also write
these expressions not for the quantum fields only (fluctuations), but for the full-state correla-
tors, which might be more accessible either experimentally or theoretically. To do so, we can use
the backward relation:

(4.16)⟨a~1
†ia~2

†ja~2
ka~1

l ⟩ = ∑i′, j′, k′, l′ = 0

i, j, k, l
( − 1)i′ + j′ + k′ + l′ ii′ jj′ kk′

ll′ (α1
∗)i − i′(α2

∗)j − j′α2
k′α1

l′ ×

⟨a1
†(i − i′)a2

†(j − j′)a1
k − k′a2

l − l′⟩,
which applied to ℐi leads to:

(4.17a)I0 = ⟨a1
†a2

†a2a1⟩ − ⟨a1
†a1⟩⟨a2

†a2⟩ − 4 |α1 |2 |α2 |2 + 2 |α1 |2 ⟨a2
†a2⟩ +

2 |α2 |2 ⟨a1
†a1⟩ + 2 Re {α1α2⟨a1

†a2
†⟩ + α1α2

∗⟨a1
†a2⟩ − α1⟨a1

†a2
†a2⟩ − α2⟨a1

†a2
†a1⟩} /n1n2,

(4.17b)

I1 =2 Re α1⟨a1
†a2

†a2⟩ + α2⟨a1
†b†a1⟩ − 2α1α2⟨a1

†a2
†⟩ − 2α1α2

∗⟨a1
†a2⟩ +

 2 |α1 |2 |α2 |2 − |α1 |2 ⟨a2
†a2⟩ − |α2 |2 ⟨a1

†a1⟩ /n1n2,

(4.17c)I2 =2 Re α1α2 ⟨a1
†a2

†⟩ + α1α2
∗⟨a1

†a2⟩ − 2 |α1 |2 |α2 |2 /n1n2 .
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One can recover from this general result the particular case in equation (4.8) of a coherent
squeezed state by checking that these quantities for α, ξ, ζ12  with vanishing amplitudes

(αi → ϵαi, ri → ϵ2ri and t12 → ϵ2t12, with ϵ → 0), read

(4.18)I0 ≈
t12
2

|α1 |2 |α2|2 , I2 ≈ −
2t12cos(ϕ1 + ϕ2 − ϑ12)

|α1 | |α2|
,

while the anomalous I1 is exactly zero for any set of parameters. This recovers equation (4.9d)

from equation (4.14) and, with the conditions for the cancellation of g12
(2) in equation (4.11), this

gives

(4.19)I0 ≈ 1 , I2 ≈ − 2 ,

i.e. it is the compensation between the mean field and the squeezed two-mode fluctuations that
leads to g12

(2) = 0 at first order in the parameters, just as we find for single-mode antibunching
[48,55]. All the previous considerations would be interesting, but formal results only, would
it not be for the link that photodetection offers to the theory of frequency-resolved photon
correlations, as discussed in §3. Namely, retaining the frequency information of the photons that
one correlates, brings to the fore the decomposition equation (4.18) but now for the continu-
ously varying frequencies ωi as opposed to independent modes ai. We now turn to such a
dynamical setting.

5. Squeezed cavity
We return to the two-photon spectrum, to reveal how the concepts of squeezed and coherent
admixtures introduced in §4 explain the results we reported for resonance fluorescence in
figure 2. We can best show that this is the case by bringing directly all these components
externally to a cavity a and collect the re-emitted admixed light, instead of a two-level system
producing them internally. This approach also invites closer inspection of such excitation
schemes [79]. The sensor technique for this scenario produces the Hamiltonian:

(5.1)Ha = Δa a†a + iΛa
2 (a†2 − a2) + Ωa(eiϑa† + e−iϑa) + Δ1ς1†ς1 + Δ2ς2†ς2 + ϵ ∑i = 1,2

(a†ςi + ςi†a) .

Here, we have a passive, linear cavity a, driven by both a squeezed source with strength Λa
and a laser with amplitude Ωa, with ϑ the phase difference between the coherent and squeezed
sources. In resonance fluorescence, only the coherent state is provided externally while the
weak nonlinearity, given the weak driving, produces the squeezing. In other cases, everything
could be produced by the system itself (e.g. like the Mollow triplet produced under incoherent
pumping when placed in a cavity that undergoes lasing [80]). While the two-level system is
inherently antibunched (gσ(2)(0) = 0), independent of the nature and strength of the driving, a
squeezed coherent cavity may modulate the photon statistics from bunched to antibunched
as the parameters change. As we are interested in showing the similarity of this system with
resonance fluorescence, we first seek to find the conditions that minimize the cavity’s two-pho-
ton correlator ga(2). In the steady-state, the bare correlations of the squeezed cavity are

(5.2)⟨a⟩ = −
2iΩa[eiϑ(γa − 2iΔa) − 2e−iϑΛa]γa2 + 4Δa2 − 4Λa2 and ⟨a†a⟩ = 2Λa2γa2 + 4Δa2 − 4Λa2 + |⟨a⟩|2 .

We do not provide the expression for the general ga(2) as it is too voluminous and not imme-

diately needed for our discussion, unlike the variance ⟨a2⟩ − ⟨a⟩2 = Λa(γa − 2iΔa)/[γa2 + 4Δa2 − 4Λa2]

that is required for the phase matching θ = 2ϕ between ϕ ≡ arg (⟨a⟩) and θ ≡ arg (⟨a2⟩ − ⟨a⟩2)
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needed to minimize ga(2). This is satisfied for tan (2ϑ) = 2Δa/γa. There is an upper-bound for
the squeezing amplitude Λa beyond which the system is unstable and results in unphysical

steady states, namely, it must be that Λa < γa2 + 4Δa2 /2. Reparameterizing Λa as Λa = Γaλ/2 where

Γa ≡ γa2 + 4Δa2, expresses this stability condition to λ < 1. The cavity phase and its population in
the phase-matching, i.e. optimum antibunching configuration, are then found as

(5.3)⟨a⟩ =
2iΩa γa − 2iΔa

(1 + λ)Γa3 and ⟨a†a⟩ = (1 + λ)−2 4Ωa2
Γa2 + λ2(1 + λ)

2(1 − λ) ,

with now a tractable two-photon coincidences phase-matched ga(2) (in the Γ ∞ limit):

(5.4)ga(2)(0) = (1 − λ)2

[Γa2λ2(λ2 − 1) − 8Ωa2(1 − λ2)]2 Γa4λ2(1 + λ)2(1 + 2λ2) + 16Ω2
2Γa2λ(λ2 − 1)(1 − 2λ) + 64(1 − λ)2Ωa4 .

Deriving equation (5.4) with respect to Ωa, we find the minimum value possible for ga(2) of a
squeezed cavity admixed to a coherent state:

(5.5)ga, min
(2) = 2 λ(2 − λ)

1 + 2λ − λ2 ≈λ → 0 0 + 4λ ,

which is obtained for the ‘optimum’ driving Ωa, optmin:

(5.6)Ωa, optmin = Γa λ/2(1 + λ)
2(1 − λ) ≈λ → 0 Γa

2 λ/2 .

This produces antibunching for the whole range 0 ≤ λ < 1 and reaches zero as λ gets smaller (for
both Λa → 0 and Δa → ∞, which is the case of interest). Applying the optimum antibunching
conditions in the limiting case Δa → ∞ and, therefore λ → 0, we get for the spectrum

(5.7)Sa, Γ(ω) ≈ | ⟨a⟩|2L Γ(ω) + (⟨a†a⟩ − | ⟨a⟩|2 ) 2
π

γ12(γ11
2 + 4Δa2) + 4Γω2

(γ11
2 + 4ω2)2 + 8Δa2(γ11

2 − 4ω2) + 16Δa4
where we also used the shortcut γij ≡ iΓ + jγa but this time for γa. We will now show that this
matches exactly the two-level system result. The same occurs for the two-photon correlator for
the squeezed cavity,

(5.8)ga(2)(τ) ≈ 1 + e−γaτ − 2 e−γa/2 τcos (2Δaτ) ,

which is identical at resonance to the expression for the unfiltered two-level system, cf. equation
(2.10). In the next section, we show that the agreement holds also in the presence of detuning.
We conclude this preliminary section with the numerically exact two-photon spectrum for
the squeezed cavity in the optimum phase-matching, θ = 2ϕ, and pumping, equation (5.6),
conditions, which is shown in figure 3a. Its excellent qualitative agreement for most of the
features with resonance fluorescence involving the two-level system, is obvious (cf. figure 2f).
This confirms the central importance of quantum state interferences in general and of coherent
and squeezed states in particular, to account for the phenomenology of two-photon physics of
detuned resonance fluorescence. This is fully established in the next section.

6. Detuned resonance fluorescence
We can now complete our argument by returning to the two-photon spectrum of resonance
fluorescence (i.e. for the two-level system σ). We will focus on detuning, since this highlights
various features of interest, starting with the spectral separation of the coherent peak, which
stays pinned at the centre, from the incoherent emission, that splits into the symmetric doublet
of side peaks, with a neat interpretation in terms of two-photon scattering as sketched in figure
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1c,d [29]. Our goal now is to show that the one- and two-photon spectra of the coherently
squeezed cavity derived in the previous section are, beyond their qualitative agreement with
the two-level system, in fact in quantitative agreement to leading order in the driving. This
will confirm that in this detuned Heitler regime, and at the two-photon level, the main role of
the two-level system is to bring in a component of squeezing, and that the observed phenom-
enology then follows from two-mode interferences between squeezed and coherent states,
with frequencies spanning over all possible modes of the system. The one-photon detuned
Heitler spectrum SΓ(ω) from equation (2.4), with Δσ ≫ Ωσ, indeed recovers the squeezed-coher-
ent cavity spectrum (equation 5.7) with the correspondence (Ωσ2 /Δσ2) → Λa/(2|Δa|). Besides,
those are the populations ⟨σ†σ⟩ and ⟨a†a⟩, respectively. The same occurs with two-photon
correlations, although the general expression being awkward, it is not practical to display

Squeezed Cavity

2

0

–1

–2

–2 –1 0 1 2

1
1

10–2

105

(d)

Two-photon backbone

Homodyned detuned Heitler regime Homodyned squeezed cavity

(f)(e)

i

ii

iii

iv

 2 with detuning (  0 ≈ (  2/2)2,   1 ≈ 0)  0 at resonance (  1 ≈   2 ≈ 0)

–2 –1 0 1 2 –2 –1 0 1 2

2

0

–1

–2

–2 –1 0 1 2

1

–2 –1 0 1 2 –2 –1 0 1 2

1
10–2

109

1
109

1

1
1

1 1

1 1 1

ga,G
(2)

ga,G
(2)

g
G

(2)~ ~

(a) (b) (c)

Figure 3. Manifestations of the origin of the circles of antibunching: (a) the numerical two-photon spectrum for the
squeezed cavity reproduces an almost identical structure to that of exact resonance fluorescence (cf. figure 2f). (b) The circle
is removed when the coherent fraction itself is removed (by homodyning), leaving only the strong superbunching leapfrog
processes. This is to be compared with (c) the counterpart for the squeezed cavity, which shows that the central antidiagonal
also includes a squeezing component. (d) The analytical expressions produce an exact circle and straight lines appearing
as equation (6.5) and equations (6.6)−(6.7), respectively. The mesh of thin lines are those observed in some two-photon
landscapes that go beyond the physics covered in this text. (e) and (f) show the structure for the main I  coefficients that

account for the two-photon spectrum of figure 2, namely, I 2 with detuning and I 0 at resonance. Shaded regions in (e) are

negative. Parameters: (a) γa = 1, Δa = 80.1, λa = 0.001 and Γ = 2, optimizing antibunching. (b) is the same as figure 2f
but with an external homodyning field α = −⟨σ⟩.
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here their mathematical identity, which we have, however, checked. We can, instead, highlight
particular cases of interest, including the insightful tampering of the photon interferences by
filtering out the central peak with a notch filter [59]. In this case, instead of filtering part of
the spectrum and correlating it, one filters out another part and correlates what remains. Such
an observable could be derived using the frequency-filtered approach described previously, but
filtering out the coherent peak is more expediently achieved by homodyning it out, admixing
the total luminescence with a laser of matching amplitude α but with opposite phase. If we
parameterize this field as α = − F ⟨σ⟩ in terms of 0 ≤ F ≤ 1, the two-photon correlations for the

homodyned field are found in two limiting cases of interest as:

(6.1a)lim
Δσ
Ωσ → ∞

gF(2)(τ) = 1 + 1
(1 − F )4e−γστ − 2

(1 − F )2e−(γσ/2)τcos(Δστ) ,

(6.1b)lim
F → 1

gF(2)(τ) = 1 + Δσ4
4Ωσ4 e−γστ ,

where equation (6.1a) goes first to the detuned Heitler regime (large detuning and weak
driving, the result being independent of how this limit is taken) while equation (6.1b) first
homodynes the field completely (F = 1, with the coherent peak completely removed so only the

incoherent emission is taken). Note that the order of the limits matters, since

(6.2)lim
F → 1

lim
Δσ
Ωσ → ∞

gF(2)(τ) ≠ lim
Δσ
Ωσ → ∞

lim
F → 1

gF(2)(τ) ,

producing the aforementioned divergencies to leading order. In the first case, only the
detuning survives the limit, producing more or less densely populated oscillations between
two envelopes depending on whether Δσ goes to infinity faster than Ωσ goes to zero. When
F = 0 (no correction, so the full emission is taken, including the laser’s scattered light), equation

(5.8) is recovered. In the second case, the envelopes have collapsed onto each other so that
oscillations are removed and a smooth bunching is observed. These are the two photons ωv andωσ of figure 1d arriving together [59]. The presence of the laser thus allows them to arrive at
different times so that their coincidence gets suppressed. This is the origin of antibunching in
this case [55]. Oscillations can also be understood as beating due to detuning. More general
spectral filtering brings us directly to the full two-photon spectrum. With homodyning, the
two-photon spectrum is that of the incoherent part alone and its landscape of correlations
transforms from figure 2f to figure 3b, i.e. the circle disappears. This is another proof of its
origin from interferences between the squeezing—that remains and produces extreme bunching
(cf. the scale)—and coherence. The result is similar for the squeezed cavity, i.e. with Ωa = 0,
but without the side leapfrogs, the central cross and the antibuching around the real peak, as
shown in figure 3c. The general two-photon spectrum can be obtained analytically (for both
the two-level system and the squeezed cavity, both at and out-of resonance, with or without
homodyning), but it is too voluminous to be replicated here. Excellent approximations can,
however, be derived in the the highly detuned regime Δσ ≫ Ωσ ≫ γσ, where emission drops due
to the inefficient excitation of the system and thus enters in the Heitler regime, although the
driving is taken much larger than the decay. As a consequence, the main contribution for the
emitted light is the coherent one. To leading order, the population of each sensor ⟨ςi†ςi⟩—that
both provide, from the sensor method, the spectral shape SΓ(ϖ)—recovers the spectral shape
equation (5.7), featuring a diverging contribution at the origin that corresponds to the coherentδ peak, in addition to the symmetric side peaks, which are also revealed as not Lorentzian:

(6.3)SΓ(ϖ) = ϵ2Ωσ2
Δσ4

1ϖ2 + 2ϵ2Ωσ4
ΓΔσ6

Γ + 2γσ + Γϖ2

(1 −ϖ2)2 + higher orders .
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The two-photon correlation spectrum is similarly obtained in both cases as:

(6.4)gΓ
(2)(ϖ1,ϖ2) = (ϖ1

2 + ϖ1 + ϖ2
2 + ϖ2)2

(ϖ1 + ϖ2)2(ϖ1 + 1)2(ϖ2 + 1)2 + higher orders.

This surprisingly compact expression gives an excellent qualitative account of the detuned
resonance fluorescence landscape shown in figure 2f with divergences and exact zeros that
capture the resonances, which get tamed by the higher order corrections as is the case for
populations with equation (6.3). From the analysis of the zeros of both the numerator and
denominator of this expression, we can thus locate the main features of the two-photon
spectrum. Minima correspond to antibunching. They are found by setting the numerator of
equation (6.4) to zero, which, rewriting the equation as

(6.5)ϖ1 + 1
2

2
+ ϖ2 + 1

2
2

= 1
2

is that of a circle centred at ϖ1 = ϖ2 = −1/2 and with radius 2/2. This not only gives the most
compelling explanation for the circle of antibunching—as a two-mode interference between
squeezing and coherence—it also shows that it is, indeed, an exact circle. Bunching maxima are
actually divergences to leading order and located at the condition that vanish the denominator,

(6.6)ϖ1 = −1 , ϖ2 = −1 and ϖ1 + ϖ2 = 0

producing the three main bunching lines of detuned resonance fluorescence, which make a
right-angled triangle. Additional maxima can be found looking for the zeros of higher orders
(less pronounced in the plot). These are at

(6.7)ϖ1 = 1 , ϖ2 = 1 and ϖ1 + ϖ2 = ±1 .

The horizontal and vertical correlations now concern the real peak, which is much less
correlated than its virtual counterpart. The anti-diagonal lines are the other leapfrog processes.
All these lines, along with the circle, are plotted in figure 3d as a backbone for the two-photon
correlation spectrum. The decomposition of the 2PS into its interference terms, using equation
(4.17), leads to:

(6.8a)I0 ≈
ϖ1

2ϖ2
2(2 + ϖ1 + ϖ2)2

(ϖ1 + ϖ2)2(ϖ1 + 1)2(ϖ2 + 1)2 ,

(6.8b)I1 ≈ 0,

(6.8c)I2 ≈ −
2ϖ1ϖ2(2 + ϖ1 + ϖ2)

(ϖ1 + ϖ2)(ϖ1 + 1)(ϖ2 + 1) .

This reveals that, furthermore

(6.9)I0 = (I2/2)2

which, from equation (4.14), provides g(2) as a function of the squeezing component alone:

(6.10)gΓ
(2) = 1 +

I2

2

2

.

This relationship holds when the coherent fraction dominates over the incoherent, or quantum,
fraction, with also phase-matching between them, in which case, squeezing can be related to
photon fluctuations [17,38]. This is the case for instance in equation (4.18) when ϕ1 + ϕ2 − ϑ12 = 0
or π. This is also the case in the Heitler regime where the coherent fraction overtakes the signal
[16,31], including in the presence of filtering [55]. This relationship is the chief reason why
squeezing has been more difficult to observe than antibunching [81]. In more general situations,
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in particular when I1 is non-zero, there are deviations from this ideal. The exact numerical

results of I i for resonance fluorescence are shown in figure 2(g–o). The rightmost column of the

detuned Heitler regime is well approximated by equations (6.8) with, in particular, I1 ≈ 0 (the

darker area means a negative sign for the plotted quantity) and I0 and I2 having the redundant

appearance from equation 6.9. The squeezing component changes sign on its various domains,
as shown in the figure and sketched in figure 3e where dark areas indicate negative values. The
condition that produces the circle of exact antibunching leads to

(6.11)I0 ≈ 1 , I1 ≈ 0 , I2 ≈ − 2 ,

which are the same as those for two-photon suppression from destructive interferences between
the squeezing and coherent component of a single mode, but here occurring at the two-photon
(with two different frequencies) level. Since I2 < 0 for this to occur, this happens in the four

triangles i–iv that corner the circle, as shown in figure 3e. The right-angled triangle of bunching
defined by the red lines shown in figure 3e is also interesting. These lines lie at the frontier of
I2 changing sign, as can be seen in figure 2o where they match the dotted lines where I2 = 0,

although it is large (in absolute value) on both sides. The antidiagonal line matches with the
central leapfrog line at resonance, which smoothly transforms into the central squeezing line
best seen in figure 3c. A leapfrog component is retained, however, since the two side leapfrog
lines remain visible and only from I0, as seen in figure 2i. The two new lines that appear,

horizontal and vertical, betray the virtual character of the peak, which remains correlated, at
this pinned frequency, with all the other photons at all the frequencies (this is the novelty
as compared with the leapfrog photons). This includes the real photon from the other peak,
in which case one realizes the heralded two-photon scheme [68,82,83]. It is noteworthy that
not only the circle, but also these vertical and horizontal lines disappear with homodyning
(cf. figure 3b,c), which shows that they arise from a purely interference effect, but this time a
constructive as opposed to destructive one, i.e. corresponding to unconventional (two-mode)
bunching according to the terminology of [16]. Interestingly, the anomalous correlator I1

appears to play a role in the constitution of these ‘anomalous’ lines, which therefore demand
further attention, that is beyond the scope of our current discussion. In contrast, in the first
column of figure 2, i.e. at resonance, one has the opposite situation where I0 ≫ I2 and,

furthermore, I0 < 0 in the two diagonal quadrants, which contain the spectral peaks (with a

meticulous exclusion of the leapfrogs). This signals the non-Gaussian, i.e. Fock, or multi-photon
emission, character of both the leapfrogs which have no squeezing associated to their constitu-
tion, and of the side peaks, which have the characteristic I0 of antibunching dominated by

the fluctuations of the incoherent emission. The main structure in this case is sketched in
figure 3f as the two-photon Mollow triplet of leapfrog photons, broken by real transitions. The
plus sign (or butterfly) shape of antibunching (in blue) is characteristic of frequency-resolved
spontaneous single-photon emission [62] and shows that the side peaks inherit the single-pho-
ton character from the two-level system, unlike the central peak due to which path interferences
[68]. The second column, as the system transits from one case to the other, shows the ‘evapora-
tion’ of the negative domain in I0, which reduces to a tiny islet around the real peak only at

high detuning, as well as the emergence and shaping of squeezing in I2. It also shows the role

of the anomalous correlator I1 in bridging between these two cases, being close to negligible in

the other limits.
This achieves our description of the two-photon landscape of resonance fluorescence. All

the features have been explained. There is a rich combination of various mechanisms, from
multi-photon emission to multi-photon interferences, being realized in different regions of
phase space where they can be isolated and exploited. We have largely focused on zero
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time-delay, but one could similarly consider the time dynamics of this physics, as we did in
[83] where, cross-correlating the side peaks of detuned resonance fluorescence with or without
homodyning the coherent peak, we observed a considerable transformation and enhancement
of the correlation functions. Clearly, the problem is far from being exhausted. Also, it should be
clarified that although at the two-photon level, the physics is captured by two-mode squeezing,
the broader problem includes higher photon numbers and goes much beyond this vantage
point. One should not make the same mistake with two-photon spectra as has been made with
single-photon ones, i.e. assuming that the picture is now complete. This might be the case for
the squeezed cavity, since it only involves Gaussian states and thus is fully described through
its two-photon correlators, higher-order ones being functions of those. But the two-level system
gives rise to non-Gaussian states, and so, the three-photon spectrum (and others of higher
orders) are most certainly providing as radical changes as compared with the two-photon case
than the two-photon case does to the single-photon one. Some of this higher order physics does
in fact indeed transpire in two-photon observables. In the next section, we give a brief overview
of a few alternative quantifiers of two-photon emission. There, one will get a chance to sight
unaccounted-for phenomena.

7. Violation of inequalities
The above results invite one to seek new regimes of strongly correlated quantum emission,
away from the spectral peaks. There is much to prospect for, and various regions (photons
of different frequencies) provide us with different types of light. To highlight this point, we
compute various quantifiers of non-classical correlations, which can be applied to frequency-fil-
tered photons [84]. We consider here the case of highly detuned resonance fluorescence, since
it was not previously considered in this context, and for being both a clean and fruitful source
of correlations. We also add a new quantifier for two-mode squeezing, due to the emphasis
we have given to its role, also clarifying that while we have compellingly established the
importance of squeezing in the broad phenomenology, we are far from having exhausted the
topic. Figure 4a shows the violation of Cauchy–Schwarz inequalities when R > 1 where

(7.1)R ≡ g12
(2) 2/ g11

(2)g22
(2) ,

while figure 4b shows the violation of Bell’s inequalities when B > 2 where, this time:

(7.2)B ≡ 2
⟨ς1†2ς12⟩ + ⟨ς2†2ς22⟩ − 4⟨ς1†ς2†ς2ς1⟩ − ⟨ς1†2ς22⟩ − ⟨ς2†2ς12⟩⟨ς1†2ς12⟩ + ⟨ς2†2ς22⟩ + 2⟨ς1†ς2†ς2ς1⟩ .

Figure 4c shows two-mode squeezing, which is present if and only if S > 1, where [85]:

(7.3)S ≡ |⟨ς12ς22⟩ − ⟨ς1ς2⟩2|⟨ς1†ς2†ς2ς1⟩ − |⟨ς1⟩⟨ς2⟩|2 .

From the Cauchy–Schwarz inequality, one can see again in figure 4 the region of no-coincidence
emission, where the system stops emitting at the two-photon level, which is the black circle.
This quantity might be even more suitable to identify the region of no two-photon emission,
being a more properly normalized version of two-photon correlations. It generalizes spectral
line elimination via quantum interferences in spontaneous emission [86] to the case of two-pho-
ton emission. The green regions show non-classical emission. Since the main diagonal is white,
it means that the emission at any frequency from the spectrum is classical, which is also the case
at resonance [84]. Both the main leapfrog and photons involving the virtual peak are strongly
quantum correlated, and are likely valuable resources for quantum emitters of a new type.
The Bell inequality is, interestingly, of a quite different character, being mainly attached to the
main leapfrog (as well as a little to the circle of no two-photon emission, surprisingly) where,
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unlike other quantifiers that behave more like resonances, it spreads and increases as one gets
away from the triplet. Those are features that we cannot currently explain. Finally, figure 4c,
which indicates two-mode squeezing, is probably the most interesting as it first confirms that
this is a feature to be found almost everywhere in detuned resonance fluorescence, except in
the vicinity of the real peaks. More interestingly, however, new lines whose slope betray other
photon combinations (2ϖ1 + ϖ2 = k and ϖ1 + 2ϖ2 = k where k = −1 or 0) reveal that there is rich
additional physics that we have not yet touched upon, possibly involving squeezed correlations
of higher photon numbers. Even at the qualitative level of explaining the basic but strong
features that shape the landscape, we find evidence of more complicated processes inherited
from beyond two-photon physics. Some of them have been discussed through g(n) correlators
at resonance [67]. The features not yet accounted for from the quantifiers discussed in this
section are reported in figure 3d as thin lines, requiring new physics. In its pursuit, we could
indeed, using the same approach and techniques, but computing other observables, character-
ize other types of correlations, such as three-mode squeezing, other types of entanglement,
quadrature-based tripartite inseparability [87,88], etc. It is clear that there remains much to
explore, understand and turn into devices, even with the simplest problem of quantum optics,
while the same approach can be applied to more complicated systems, from cosmic radiation to
atoms and molecules passing by condensed matter and other types of quantum emitters.

8. Conclusion and outlook
We have provided a detailed, and essentially analytical, picture of the two-photon physics
of resonance fluorescence. Maybe the most important message is that this should be contem-
plated on its own, independently from one-photon observables, however ingrained is one’s
attachment to intensity, signal and photoluminescence spectra. This text was written at the
invitation of the Royal Society to commemorate the Newton International Fellowship awarded
to one of us (EdV, in 2009). It brings together various of EdV’s research lines, which started
at this occasion with a theory of lasing that produced the Mollow triplet with coherence
provided by the emitter itself as opposed to being brought from outside [80]. This led her
to study in more details the coupling (and decoupling) of two-level systems [89] and how they
develop and maintain correlations in the steady state [90], sustaining a rich span of different
regimes interpolating between incoherent and coherent [91], from the interplay of quantum and
dissipative light-matter interactions. The need to scrutinize as completely as possible photon
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Figure 4. Violations of (a) Cauchy and (b) Bell inequalities in highly detuned resonance fluorescence, as well as presence
of (c) two-mode squeezing. Filtering harvests correlations. Sight of new physics beyond that discussed in the text is also
apparent. Parameters are the same as for figure 2f.
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correlations from such platforms led to the introduction of the frequency degree of freedom,
this time as part of a Humboldt Fellowship. This provides the first pillar on which stands the
edifice that explains the two-photon physics of resonance fluorescence (and a wealth of other
problems in its wake): the theory of frequency-resolved multi-photon correlations [15,61]. The
other pillar is the theory of quantum field admixtures [16]. Remarkably, while these have been
pursued independently, they turn out to be naturally and deeply interconnected, besides, on
what is possibly the simplest-possible non-trivial problem of quantum optics: the coherently
driven two-level system. We believe that this betrays the extremely fundamental and universal
character of these concepts. The other authors of this text, as we are sure would also our past
collaborators on these topics, concur that the surprisingly complex and rich phenomenology
that is being revealed, far from exhausting or completing the description of the problem, is only
making it even more mysterious and unfathomable. This evokes to us the aphorism of Newton
himself:

I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then
finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.

While we have for brevity, simplicity and current experimental interest, focused on two-
photon physics, the above approach is completely general and can, indeed inevitably will, be
generalized to multi-photon correlations and n-mode squeezing. Spheres of antibunching [67]
have already been spotted in three-photon correlation spectra and it is obvious that resonance
fluorescence abounds with three-mode squeezing that remains to be characterized, measured
and exploited. Among other compelling immediate continuations of this work, we can mention
(i) seizing additional control and tuneability of the correlations by externally adjusting the
interferences with a laser [31], (ii) using strongly correlated two-photon spectral locations for
quantum-spectroscopic applications [92], or (iii) Purcell-enhancing them to realize new types
of devices with high-purity and strong signal [74]. There are definitely still other and possi-
bly even more exciting prospects. At any rate, it is clear that, although inconspicuous at the
one-photon level, there is a rich and varied two-photon physics, which takes place everywhere.
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