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We discuss the luminescence spectra of coupled light-matter systems realized with semiconductor hetero-
structures in microcavities in the presence of a continuous, incoherent pumping, when the matter field is
fermionic. The linear regime—which has been the main topic of investigation both experimentally and
theoretically—converges to the case of coupling to a bosonic material field, and has been amply discussed in
the first part of this work. We address here the nonlinear regime, and argue that, counter to intuition, it is better
observed at low pumping intensities. We support our discussion with particular cases representative of, and
beyond, the experimental state of the art. We explore the transition from the quantum to the classical regime,
by decomposing the total spectrum into individual transitions between the dressed states of the light-matter
coupling Hamiltonian, reducing the problem to the positions and broadenings of all possible transitions. As the
system crosses to the classical limit, rich multiplet structures mapping the quantized energy levels melt and
turn to cavity lasing and to an incoherent Mollow triplet in the direct exciton emission for very good structure.
Less ideal figures of merit can still betray the quantum regime, with a proper balance of cavity versus
electronic pumping.
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I. INTRODUCTION

In the first part of this work,1 we have addressed the cou-
pling of light and matter in the particular case where the
material excitation follows Bose statistics, solving analyti-
cally this so-called linear model of two harmonic oscillators.
We emphasized how a proper consideration of the incoherent
pumping scheme was needed to describe the effective quan-
tum state realized in the system, and how this bore conse-
quences on the spectral line shapes, in particular on the abil-
ity to resolve a Rabi doublet when the splitting to broadening
ratio is small.

In this second part, we turn to the case where the material
excitation follows Fermi statistics and explore the Jaynes-
Cummings model.2,3 These two papers focus particularly on
quantum dots �QDs� as the matter part of the system, which
elementary excitation—the exciton—consists of an electron
being promoted from the valence to the conduction band.
The coupling of this electron with the vacancy it has created
in the valence band �the “hole”�, can be either a fermion or a
boson, or possibly an interpolating case of the two.4 Strong
coupling �SC� regime requires efficient coupling of the dot
with light, which can be enhanced from the dot point of view
by increasing the dipole moment d of the exciton �the cou-
pling strength g is proportional to �d ·E� where E is the cavity
electric field�. Large QDs on the other hand would favor the
overlapping of many excitons, whereas small QDs, by con-
fining separately the electron and hole wave functions, fully
exhibit Pauli blocking.4 The former case was studied in part
I and we now turn to the latter. We use the same formalism
and similar techniques, what allows for a comparison and a
clear understanding of the specifics of both cases. It is known

that in absence of nonlinearity or saturation of some sort, the
quantum case is equivalent to the classical one.5 In particu-
lar, the PL spectrum exhibits a Rabi doublet at resonance,
which can be equally well accounted for by a purely classical
model.6 There is therefore a strong incentive to evidence
nonlinear deviations and attribute them to quantum
effects.7–11 Recently, reports of nonlinearities of a quantum
origin have indeed been reported in the spectral line shapes
of atoms12 and circuit QED.13,14

In studying the spectral shape of the coupled light-matter
system, be it with atoms or semiconductors, spontaneous
emission from a given initial state has been overly privileged
as the case of study.15 Even when the emitter was modeled as
a two-level system, this configuration allowed to reduce it to
the linear model by considering a single excitation as the
initial state.16–21 Most of the times that the excitation scheme
was considered at the same level as the rest of the dynamics,
this was for coherent pumping.22–28 The luminescence spec-
tra under incoherent excitation,29–35 that is more adequate to
describe semiconductors, has attracted less attention. In the
atomic literature, Cirac et al.29 have considered a thermal
photonic bath and were the first to our knowledge to report
the characteristic Jaynes-Cumming multiplet in an exact op-
tical spectrum. Tian and Carmichael30 considered thermal
baths for both modes, in the low excitation regime. Löffler et
al.31 considered spectral shapes for the one-atom laser at
resonance by numerical integration of the master equation.
Karlovich et al.35 concentrated on strong coupling at reso-
nance and low pump. Some of our results, in the good cavity
case, recover these pioneering reports. In the wake of part I,
we rely on semianalytical results that put clearly apart the
spectral and dynamical aspects of the problem. We shall dis-
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cuss how our approach allows in general to track the transi-
tions between the different regimes and in particular to iden-
tify the quantum to classical one.

One of the most important current tasks of the SC physics
in semiconductors in our view is the quantitative description
of the experiment with a theory that can provide statistical
estimates to the data, in particular intervals of confidence for
the fitting parameters. In this respect, there would be little
need for fitting an experiment that would produce a clear
observation of the Jaynes-Cummings energy levels, which is
a strong qualitative effect. But no such structures have been
observed so far and the deviations to Rabi doublet have been
understood as nonfundamental features of the problem.36 The
most likely reason for this lack of crushing observations of
the quantum regime in the PL line shapes is that the best
systems currently available are still beyond the range of pa-
rameters that allows the quantum features to neatly domi-
nate. Instead, they are still at a stage where it is easy to
overlook more feeble indications, as shall be seen in what
follows for less ideal systems that are closer to the experi-
mental situation of today. Another possible reason is that the
models are not suitable and a QD cannot be described by a
simple two-level system. Then more involved theories
should take over, with, e.g., full account for electron and hole
band structures and correlations.9,37,38 However, if a simpler
theory is successful, notwithstanding the interest of its more
elaborate and complete counterpart, it clearly facilitates the
understanding and putting the system to useful applications
�especially in a quantum information processing context�. At
present, there is more element of chance left in the research
for quantum SC than is actually necessary. If a quantitative
description of even a “negative experiment” �not reporting a
triplet or quadruplet� could be provided, this would help
tracking and probably even direct the progress toward the
ultimate goal: a fully understood and controlled SC in the
quantum regime.

The rest of this paper is organized as follow. In Sec. II, we
spell out the model. In Sec. III, we detail the formalism and
provide the expressions for all—and only those—correlation
functions that enter the problem, making it as computation-
ally efficient as possible for an exact treatment. We provide a
decomposition of the final spectra in terms of transitions of
the dressed states, which gives a clear physical picture of the
problem. In Sec. IV, we give the analytical expressions for
the position and broadening of the resonances of the system
at vanishing pumping. Weighting these resonances by the
self-consistent dynamics of the system established by finite
pumping and decay, gives the final spectral shape. We dis-
cuss in particular the notion of SC that varies from manifold
to manifold, rather than holding for the entire system as a
whole. In Sec. V, we consider three particular points repre-
sentative of the experimental situation, plus one point be-
yond what is currently available. We first discuss their be-
havior in terms of population and statistical fluctuations as
imposed from the pumping conditions. In Sec. VI, we give
the backbone of the final spectra at nonvanishing excitations.
This is the numerical counterpart of Sec. IV, in the presence
of arbitrary pumping. In Sec. VII, we present spectral shapes
for the three points in a variety of configuration and compare
them to each other. In Sec. VIII, we investigate the situation

at nonzero detuning, which is a case of particular importance
in semiconductor physics. Finally, in Sec. IX, we provide an
overview of the results and conclude.

II. MODEL

The Hamiltonian that describes a fermionic QD in strong
coupling with a single-mode microcavity is the Jaynes-
Cummings Hamiltonian2 �� is taken as 1 along the paper�,

H = �aa†a + ���†� + g�a†� + a�†� �1�

with a the cavity mode annihilation operator tuned at energy
�a �obeying Bose statistics� and �= ��x+ i�y� /2 the exciton
annihilation operator at energy �� �obeying Fermi statistics,
�x,y are Pauli matrices�. The two modes are coupled with the
interaction strength g and close enough to resonance to allow
for the rotating wave approximation.39 The detuning between
the modes is defined as �=�a−��. The Liouvillian to de-
scribe the system in the framework of a quantum dissipative
master equation, �t�=L�, has the same form as that in part I
of this work,1

LO = i�O,H� + �
c=a,�

�c

2
�2cOc† − c†cO − Oc†c� �2a�

+ �
c=a,�

Pc

2
�2c†Oc − cc†O − Occ†� , �2b�

where � is the density matrix for the combined Fermi-
emitter/cavity system. The only change in both Eqs. �1� and
�2� with respect to their counterpart in Ref. 1 is the replace-
ment of the Boson operator b �as it was called in part I� to
describe the matter field, by a Fermion operator: b↔�. This
interchange has far reaching consequences, as will be seen in
the following of this text.

We shall not focus on the difference between the sponta-
neous emission �SE� of an initial state in absence of any
pumping, and the steady state �SS� established in presence of
this pumping, as we did in part I for the Boson case. SS is
the most relevant case for the experimental configuration that
we have in mind. Rather than contrasting the SE/SS results,
as was done in part I, we shall therefore contrast the Boson/
Fermion cases. For this reason and for concision, we shall
not use the “SS” superscript and assume that which of the
SE/SS case is assumed is clear from context or from the
presence of the time variable t.

In the Boson case, the quantum state of the system is not
by itself an interesting quantity as most of its features are
contained in its reduced density matrices, that are simply and
in all cases thermal states with effective temperatures speci-
fied by the mean populations of the modes na and n�,1 de-
fined by

na = �a†a� and n� = ��†�� . �3�

For this reason, the higher order correlator

g�2� = �a†a†aa�/na
2, �4�

that measures the fluctuations in the photon numbers, does
not contain any new information. In the Fermion case how-
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ever, g�2� becomes nontrivial, because the saturation of the
dot provides a nonlinearity in the system that can produce
various types of statistics,40 from the coherent Poisson dis-
tributions, encountered in lasers �where the nonlinearity is
provided by the feedback and laser gain�, to sub-Poissonian
statistics, with antibunching, exhibited by systems with a
quantum state that has no classical counterpart. The fluctua-
tions in particle numbers naturally influence the spectral
shape.

III. CORRELATION FUNCTIONS AND SPECTRA

The main quantity of interest of this paper is the lumines-
cence spectrum of the system. In the Boson case, the sym-
metry a↔b allowed to focus exclusively on the cavity emis-
sion without loss of generality, as the direct exciton emission
could be obtained from the cavity emission by interchanging
parameters. Here, the exciton �Fermion� and photon �Boson�
are intrinsically different, and no simple relationship links
them. They must therefore be computed independently,

Sc��� =
1

�nc
lim
t→�

R	
0

�

�c†�t�c�t + 	��ei�	d	, with c = a,� .

�5�

We consider normalized spectra for convenient comparisons
of the line shapes. The normalizing factor is the population
nc, as seen straightforwardly from 
Sc���d�=1.

As in part I, we recourse to the quantum regression theo-
rem to compute the two times average �c†�t�c�t+	��. We first
identify the set of so-called closing operators C�
� in the
sense that, for any operator �, the relation Tr�C�
�L��
=����M�
�� Tr�C����� is satisfied for some M�
�� to be speci-
fied. In the linear case, the set of ambn with m, n�N is
closed, which allows for an analytical solution. In the non-
linear case, four indices are required to label the closing
operators, namely, �
�= �m ,n , ,�� in C�
�=a†man�†��

with m, n�N, and , �� �0,1�. The links established be-
tween them by the Liouvillian dynamics are given by
Tr�a†man�†��L��=�pq��M

pq��
mn� Tr�a†paq�†�����, with M

defined as

M mn�
mn�

= i�a�m − n� + i��� − �� −
�a − Pa

2
�m + n�

−
�� + P�

2
� + �� , �6a�

M mn�
m−1,n−1,�

= Pamn, M mn�
mn,1−,1−�

= P�� , �6b�

M mn�
m−1,n,1−,�

= M nm�
n,m−1,�,1−

� = igm�1 − � , �6c�

M mn�
m,n+1,,1−�

= M nm�
n+1,m,1−�,

� = − ig� , �6d�

M mn�
m,n+1,1−,�

= M nm�
n+1,m,�,1−

� = 2ig��1 − � , �6e�

and zero everywhere else.

We are interested in this text in �=c† with c=a and
�
a�= �0,1 ,0 ,0� on the one hand, to get the equation for
�a†�t�a�t+	�� that will provide the cavity emission spectrum,
and c=� with �
��= �0,0 ,0 ,1� on the other hand, to get the
equation for ��†�t���t+	�� for the QD direct emission spec-
trum. Contrary to the Boson case, this procedure leads to an
infinite set of coupled equations. The equations of motion for
both �a†�t�C�0,1,0,0��t+	�� and ��†�t�C�0,0,0,1��t+	�� involve
the same family of closing operators C�
�, namely, with 

��k�1Nk where N1= ��0,1 ,0 ,0� , �0,0 ,0 ,1�� the manifold
of the boson case, and for k�1,

Nk = ��k − 1,k,0,0�,�k − 1,k − 1,0,1�,�k − 2,k,1,0�,

�k − 2,k − 1,1,1�� . �7�

The links between the various correlators tracked through the
indices �
� are shown in Fig. 1. To solve the differential
equations of motion, the initial value of each correlator is
also required, e.g., �a†�t�a�t+	�� demands ��a†a��t��, etc. The
initial values of �a�t�C�
��t+	�� �resp., ���t�C�
��t+	��� can
be conveniently computed within the same formalism, recur-
ring to �=1 and C�
̃� with �
̃�= �m+1,n , ,�� �resp.,
�m ,n ,+1,���. This allows to compute also the single-time
dynamics �C�
̃��t��, and their steady state, from the same
tools used as for the two-time dynamics through the quantum
regression theorem. The indices �
̃� required for the single-

time correlators form a set—that we call Ñ=�k�1Ñk—that
is disjoint from �k�1Nk, required for the two-times dynam-

ics. The set Ñ has—beside the constant term �
0�
= �0,0 ,0 ,0�—two more elements for the lower manifold �of
the Boson case�. This is because �
a�= �0,1 ,0 ,0� and �
��
= �0,0 ,0 ,1� invoke �1,1,0,0� and �1,0,0,1� for the cavity
spectrum on the one hand, and �0,1,1,0� and �0,0,1,1� for the
exciton emission on the other. At higher orders k�1, all
two-times correlators Nk otherwise depend on the same four

single-time correlators Ñk. Independently of which spectrum
one wishes to compute, these four elements �1,1,0,0�,
�1,0,0,1�, �0,1,1,0�, and �0,0,1,1� of Ñ1 are needed in all
cases as they are linked to each other, as shown on Fig. 1.

On the figure, only the type of coupling—coherent,
through g, or incoherent, through the pumpings Pa,�—has
been represented. Weighting coefficients are given by Eqs.
�6�. Of particular relevance is the self-coupling of each cor-
relator to itself, not shown on the figure for clarity. Its coef-
ficient, Eq. �6a�, lets enter �a,� that do not otherwise couple
any one correlator to any of the others. This makes it pos-
sible to describe decay by simply providing an imaginary
part to the energy in Eq. �1�. The incoherent pumping, on the
other hand, establishes a new set of connections between
correlators. Note, however, that at the exception of �
0�, the

pumping does not enlarge the sets �Nk, �Ñk: the structure
remains the same �also, technically, the computational com-
plexity is identical�. The correlators are only affecting each
other differently. The addition of �
0� by the pumping terms
bring the same additional physics in the Boson and Fermion
cases: it imposes a self-consistent steady state over a freely
chosen initial condition. In the Boson case, the pumping had
otherwise only a direct influence in renormalizing the self-
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coupling of each correlator. In the Fermion case, it brings
direct modifications to the Jaynes-Cummings coherent dy-
namics. But its contribution to the self-coupling is also im-
portant, and gives rise to an interesting fermionic opposition
to the bosonic effects as seen in Eq. �6a� in the effective
linewidth,

�a = �a − Pa, �� = �� + P�. �8�

For later convenience, we also define

�� =
�a � �b

4
. �9�

In Eq. �8�, it is seen that, whereas the incoherent cavity
pumping narrows the linewidth, as a manifestation of its bo-
son character, the incoherent exciton pumping broadens it.
This opposite tendencies bear a capital importance for the
line shapes, as narrow lines favor the observation of a struc-
ture, whereas broadening hinders it. On the other hand, the
cavity incoherent pumping always results in a thermal distri-
bution of photons with large fluctuations of the particle num-

FIG. 1. �Color online� Chain of correlators—indexed by �
�= �m ,n , ,��—linked by the dissipative Jaynes-Cummings dynamics. On the

left �right�, the set �kNk ��kÑk� involved in the equations of the two-time �single-time� correlators. In green are shown the first manifolds

N1 and Ñ1 that correspond to the Boson case, and in increasingly lighter shades of blues, the higher manifolds Nk and Ñk. The equation of

motion �a†�t�C�
��t+	�� ���†�t�C�
��t+	��� with 
�Nk requires for its initial value the correlator �C�
̃�� with �
̃��Ñk defined from �
�
= �m ,n , ,�� by �
̃�= �m+1,n , ,�� ��m ,n ,+1,���, as seen on the diagram. The red arrows indicate which elements are linked by the
coherent �strong coupling� dynamics, through the coupling strength g, while the green/blue arrows show the connections due to the
incoherent cavity/exciton pumpings, respectively. The self-coupling of each node to itself is not shown. This is where �a,� and �a,� enter.
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bers that result in an inhomogeneous broadening, whereas
the exciton pumping can grow a Poisson-like distribution
with little fluctuations. Both types of pumping, however, ul-
timately bring decoherence to the dynamics and induce the
transition into weak coupling �WC�, with the lines compos-
ing the spectrum collapsing into one. Putting all these effects
together, there is an optimum configuration of pumpings
where particle fluctuations compensate for the broadening of
the interesting lines, enhancing their resolution in the spec-
trum, as we shall see when we discuss the results below.

As there is no finite closure relation, some truncation is in
order. We will adopt the scheme where a maximum of nt
excitation�s� �photons plus excitons� is allowed at the ntth
order, thereby truncating into manifolds of excitations, which
is the most relevant picture. The exact result is recovered in
the limit nt→�. As seen in Fig. 1, the number st of two-time
correlators from N up to order nt is st=4nt−2 and the num-

ber of mean values from Ñ is 4nt. The problem is therefore
computationally linear in the number of excitations, and as
such is as simple as it could be for a quantum system. The
general case consists in a linear system of st coupled differ-
ential equations, whose matrix of coefficients �specified by
Eqs. �6�� is, in the basis of C�
�, a st�st square matrix that
we denote M. With these definitions, the quantum regression
theorem becomes

�	vc�t,t + 	� = Mvc�t,t + 	� �10�

where vc�t , t+	�= �c†�t�C�
��t+	��. Explicitly, for the lower
manifolds, e.g., for c=a,

C�
� =
C�0,1,0,0�

C�0,0,0,1�

C�1,2,0,0�

C�1,1,0,1�

C�0,2,1,0�

]

� and

va�t,t + 	� =
�a†�t�a�t + 	��
�a†�t���t + 	��

�a†�t��a†a2��t + 	��
�a†�t��a†a���t + 	��
�a†�t��a2�†��t + 	��

]

� . �11�

The ordering of the correlators is arbitrary. We fix it to that of
Fig. 1, as seen in Eq. �11�. With this convention, the indices
of the two correlators of interests are

ia = 1, i� = 2. �12�

To solve Eq. �10�, we introduce the matrix E of normalized
eigenvectors of M, and −D the diagonal matrix of eigenval-
ues

− D = E−1ME . �13�

The formal solution is then vc�t , t+	�=Ee−D	E−1vc�t , t�. In-
tegration of 
e�−D+i��	d	 and application of the Wiener-

Khintchine formula yield for the iath and i�th rows of vc the
emission spectra of the cavity, Sa= 1

�na
R
�a†�t�a�t

+	��ei�	d	, and of the direct exciton emission, S�

= 1
�n�

R
��†�t���t+	��ei�	d	, respectively. We find, to order
nt,

Sc��� =
1

�
R�

p=1

st Licp
c + iKicp

c

Dp − i�
, c = a,� , �14�

where Licp
c and Kicp

c are the real and the imaginary part, re-
spectively, of �E�icp�E−1vc�t , t��p /nc,

Licp
c + iKicp

c =
1

nc
�E�icp�

q=1

st

�E−1�pq�vc�t,t��q, 1 � p � st ,

�15�

and Dp= �D�pp �when we refer to elements of a matrix or a
vector by its indices, we enclose it with square brackets to
distinguish from labeling indices�. Further defining �p and
�p as the real and imaginary parts, respectively, of Dp

�p + i�p = Dp, �16�

we can write Eq. �14� in a less concise but more transparent
way. To all orders, it reads

Sc��� =
1

�
lim

nt→�
�
p=1

st �Licp
c �p

�� − �p�2 + �p
2

− Kicp
c � − �p

�� − �p�2 + �p
2� . �17�

Equation �17� brings together all the important quantities that
define the luminescence spectrum of a quantum dot in a mi-
crocavity. The line shape is composed of a series of Lorent-
zian and Dispersive parts, whose positions and broadenings
are specified by �p and 2�p, cf. Eq. �16�, and which are
weighted by the coefficients Licp

c and Kicp
c , cf. Eq. �15�. The

former pertain to the structure of the spectral shape as inher-
ited from the Jaynes-Cummings energy levels. They are, as
such, independent of the channel of detection �cavity or di-
rect exciton emission�. We devote Sec. IV to them. The latter
reflect the quantum state that has been realized in the system
under the interplay of pumping and decay. They determine
which lines actually appear in the spectra, and with which
intensity. Naturally, the channel of emission is a crucial ele-
ment in this case. We devote Sec. V to this aspect of the
problem.

IV. SPECTRAL STRUCTURE

In this section, we discuss the series of coefficients �p and
�p that in the luminescence spectrum �Eq. �17�� determine
the position and the broadening �half-width at half-
maximum, HWHM� of the lines, respectively, be it the cavity
or direct exciton emission. The case of vanishing pumping is
fundamental, as it corresponds to the textbook Jaynes-
Cummings results with the spontaneous emission of an ini-
tial state. It serves as the skeleton for the general case with
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arbitrary pumping and supports the general physical picture.
Finally, it admits analytical results. We therefore begin with
the case where Pa , P���a ,��. The eigenvalues of the matrix
of regression M, are grouped into manifolds. There are two
for the first manifold, given by

D1
2

= �+ + i��a −
�

2
��g2 − ��− + i

�

2
�2� , �18�

and four for each manifold of higher order k�1, given by,
for 4k−5� p�4k−2,

Dp = �k + i��a + sgn�p − �8k − 7�/2�Rk + �− 1�pRk−1
� � ,

�19�

�sgn�x� is defined as 0 for x=0 and x / �x� otherwise�, in terms
of the kth-manifold (half) Rabi splitting,

Rk =���kg�2 − ��− + i
�

2
�2

, �20�

and of the kth-manifold (half) broadening,

�k = �2k − 3��− + �2k − 1��+ = �k − 1��a +
��

2
. �21�

For each manifold, we have defined the Dp in order by in-
creasing value of the line position �p.

According to Eq. �16�, these provide the position �p of
the line and its half-broadening �p through their imaginary
and real parts. �k is always real, so contributes in all cases to
�p only. Rk is �at resonance� either pure real, or pure imagi-
nary, and similarly to the boson case, this is what defines SC.
This corresponds to an oscillatory or damped field dynamics
of the two-time correlators within manifold k, which lead us
to the formal definition:

WC and SC of order n are defined as the regime where the
complex Rabi frequency at resonance Rn [Eq. (20)] is pure
imaginary (WC) or real (SC).

The criterion for nth order SC is therefore

g � ��−�/�n . �22�

SC is achieve more easily for given system parameters �g
and �a,��, with an increasing photon-field intensity that en-
hances the effective coupling strength. The lower the SC
order, the stronger the coupling. This corresponds to the nth
manifold �and all above� being in SC �aided by the cavity
photons�, while the n−1 manifolds below are in WC. First
order is therefore the one where all manifolds are in SC.
Equation �22� includes the SC in the standard boson case,1

g� ��−�, as the first-order SC of the fermion case, that is
shown in green �thick� in Fig. 2. The same position of the
peaks �1,2 and the same �half� broadenings �1,2 is also re-
covered �in the absence of pumping�. Note that similarly to
the boson case, the SC is defined by a comparison between
the coupling strength g with the difference of the effective
broadening �a and �b. The sum of these play no role in this
regard.

The �p and �p are plotted in Figs. 2�a� and 2�b�, respec-
tively, as function of �−. Note that �p only depends on g and
�−, whereas �p also depends on �+ �that is why we plot it for
��=0�.

The Dp, Eq. �19�, have a natural interpretation in terms of
transitions between the manifolds of the so-called Jaynes-
Cummings ladder. The eigenenergies of the Jaynes-
Cummings Hamiltonian with decay granted as the imaginary
part of the bare energies ��a,�− i�a,� /2�, are given by E�

k

with

E�
k = k�a −

�

2
� Rk − i

�2k − 1��a + �b

4
, �23�

for the kth manifold. The four possible transitions between
consecutive manifolds k and k−1 give rise, when k�1, to
the four peaks we found

D4k−5 = i�E−
k − �E+

k−1���, D4k−4 = i�E−
k − �E−

k−1��� ,

�24a�

D4k−3 = i�E+
k − �E+

k−1���, D4k−2 = i�E+
k − �E−

k−1��� .

�24b�

In the case k=1, only the two peaks common with the linear
regime arise, D1,2= iE�

1 , given respectively by Eqs. �24a� and
�24b� with E0=0. The fact that the Dp correspond to i�Ek

− �Ek−1��� shows that, although the positions of the lines are
given by a difference, their broadenings are given by a sum
�because of complex conjugation�. Physically, the uncertain-
ties in the initial and final states indeed add up in the uncer-
tainty of the transition energy.

The ladder is shown �at resonance� in Fig. 2�c�. Let us
discuss it in connection with our definition of SC in this
system, to arbitrary n. When �−=0, each step of the ladder is
constituted by the two eigenstates of the Fermion dressed by
the n cavity photons, resulting in a splitting of 2�ng. This
n-dependent splitting produces quadruplets of delta peaks
with splitting of ���n��n−1�g around �a, as opposed to
the boson case where independently of the manifold, the
peaks are all placed at �g around �a. In a more general
situation with �−�0, there are three possibilities for a mani-
fold k�1:

�1� Both manifold k and k−1 are in SC. The two Rabi
coefficients Rk and Rk−1 are real. This is the case when

��−� � g�k − 1. �25�

The luminescence spectra corresponds to four splitted lines
�p→�a� �Rk�Rk−1�, coming from the four possible transi-
tions �Eq. �23�, shown as Bk and Ck in Fig. 2�c�� between
manifolds k and k−1. The emission from all the higher mani-
folds also produces four lines. They are grouped pairwise
around �a �Fig. 2�a�� and all have the same broadening, con-
tributed by �k only �the single straight line in Fig. 2�b��.

�2� Manifold k is in SC while manifold k−1 is in WC. In
this case, Rk is pure imaginary �contributing to line positions�
and Rk−1 is real �contributing to broadenings�. This is the
case when
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g�k − 1 � ��−� � g�k . �26�

This corresponds to two lines �p→�a�Rk in the lumines-
cence spectrum, coming from the two possible transitions
�shown as Ak in Fig. 2�c�� between the SC manifold k and the
WC manifold k−1. Each of them is doubly degenerated. The
two contributions at a given �p have two distinct broaden-
ings �p→�k� �Rk−1� around �k. �cf. Fig. 2�b��. The final line
shapes of the two lines A2 are the same. In this region, all the
emissions from the higher manifolds produce four lines and
all from the lower produce only one �at �a�, being in WC.

�3� Both manifold k and k−1 are in WC. The two Rabi
coefficients Rk and Rk−1 are pure imaginary. This is the case
when

g�k � ��−� . �27�

This corresponds to only one line at �p→�a in the lumines-
cence spectrum, coming from the transition from one mani-
fold in WC to the other �shown as W in Fig. 2�c��. The line is
four-time degenerated, with four contributions with different
broadenings �p→�k� ��Rk�� �Rk−1��, as seen in Fig. 2�b�.

Figure 2 is the skeleton for the luminescence spectra—
whether that of the cavity or of the direct exciton emission. It
specifies at what energies can be the possible lines that con-
stitute the final line shape, and what are their broadening. To
compose the final result, we only require to know the weight
of each of these lines.

In the SE case, the weights Lp and Kp include the integral
of the single-time mean values va�t , t� over 0� t��. There-

0

(a)(a)

(b)(b)

(c)(c)

FIG. 2. �Color online� Spectral structure of the Jaynes-Cummings model at resonance and without pumping. �a� Positions �p of the lines
in the luminescence spectrum. Only energies higher than �a are shown �not their symmetric below �a�. We take �a=0 as the reference
energy. In green �thick�, the first manifold, and in increasing shades of blue, the successive higher manifolds which form a pattern of
branch-coupling curves that define different orders of SC. �b� half-width at half-maximum �p of the lines �with ��=0�. In both �a� and �b�,
the blue filled region results from the accumulation of the countable-infinite vanishing lines. �c� Eigenenergies of the Jaynes-Cummings
Hamiltonian with decay as an imaginary part of the bare energies �the Jaynes-Cummings ladder�. This provides a clear physical picture of
panel �a� where the peaks positions arise from the difference of energy between lines of two successive manifolds. Lines Ak of �a� stem from
the emission from manifold k in strong coupling into manifold k−1 in weak coupling or vacuum. Lines Bk and Ck stem from the emission
between the two manifolds in SC. Solid lines are those plotted in �a�, dotted lines produce the symmetric lines, not shown. The horizontal
line W at 0 in �a� arises from decay between two manifolds in WC. Scheme �c� also reproduces the broadening of the lines �b� with the sum
of the imaginary parts of the eigenenergies involved in the transition.
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fore, only those manifolds with a smaller number of excita-
tions than the initial state can appear in the spectrum. Each
of them, will be weighted by the specific dynamics of the
system. The “spectral structure”—i.e., the �p and
�p—depends only the system parameters �g and �a,��. There-
fore, in the SE case, the resulting emission spectrum is an
exact mapping of the spectral structure of the Hamiltonian,
Fig. 2.

In the SS case, the weighting of the lines also depends on
which quantum state is realized, this time under the balance
of pumping and decay. But the excitation scheme also
changes the spectral structure of Fig. 2. When the pumping
parameters are small, the changes will mainly be perturba-
tions of the present picture and most concepts will still hold,
such as the definition of SC, Eq. �22� for nonzero Pa,� in Eq.
�9�. However, when the pump parameters are comparable to
the decay parameters, the manifold picture in terms of
Hamiltonian eigenenergies breaks. The underlying spectral
structure must be computed numerically for each specific
probing of the system with Pa and P�. It can still be possible
to identify the origin of the lines with the manifold transi-
tions by plotting their position �p as a function of the pumps,
starting from the analytic limit. SC of each manifold can be
associated to the existence of peaks positioned at �p
��a ,��. We address this problem in next sections.

V. POPULATION AND STATISTICS

To know which features of the spectral structure dominate
and which are negligible, one needs to know what the quan-
tum state of the system is. In the boson case, it was enough
to know the average photon �na� and exciton �nb� numbers,
and the off-diagonal element nab= �a†b�. In the most general
case of the fermion system, a countably infinite number of
parameters are required for the exact line shape. The new
order of complexity brought by the fermion system is illus-
trated by even the simplest observable. Instead of a closed
relationship that provides, e.g., the populations in terms of
the system parameters and pumping rates, only relations be-
tween observables can be obtained in the general case. For
instance, for the populations,

�ana + ��n� = Pa + P�. �28�

This expression is formally the same as for the coupling of
two bosonic modes. The differences are in the effective dis-
sipation parameter ��=��+ P� �instead of the bosonic one,
�b− Pb� and the constrain of the exciton population, 0�n�

�1. One solution of Eq. �28� is na
th= Pa /�a and n�

th= P� /��,
which corresponds to the case g=0, where each mode
reaches its thermal steady state independently �Bose/Fermi
distributions, depending on the mode statistics�. With cou-
pling g�0, we can only derive some analytical limits and
bounds.41

An interesting limiting case where inversion of the dot
population can happen, is that where �� and Pa are negli-
gible, then na= P��1−n�� /�a. When the pump is low and
n��1, na grows with pumping, but when the dot starts to
saturate and n�→1, the cavity population starts to quench
�na→0�.42 Here, all values of P� bring the system into a

steady state as na cannot diverge. However, if we allow some
cavity pumping, given that a does not saturate, Pa is
bounded. A rough guess of this boundary is, in the most
general case,

Pa � max��a,��� . �29�

If Eq. �29� is not fulfilled, the system diverges, as more par-
ticles are injected at all times by the incoherent cavity pump-
ing than are lost by decay. Numerical evidence suggests that
the actual maximum value of Pa depends on P�. To some
given order nt, divergence typically arises much before con-
dition �29� is reached, although it is difficult to know if a
lower physical limit has been reached or if the order of trun-
cation was not high enough.

As an overall representation of the typical systems that
arise in real and desired experiments, we consider three con-
figurations, shown in Fig. 3, scattered in order to give a
rough representative picture of the overall possibilities,
around parameters estimated in Ref. 43. Point 1 corresponds
to the best system of our selection, in the sense that its decay
rates are very small ��a=g /10, ��=g /100�, and the quantum
�Hamiltonian� dynamics dominates largely the system. It is a
system still outside of the experimental reach. Point 3 on the
other hand corresponds to a cavity with important dissipa-
tions, that, following our analysis below, precludes the ob-
servation of any neat structure attributable to the underlying
Fermi statistics. According to numerical fitting of the experi-
ment, real structures might even be suffering higher dissipa-
tion rates.44 Point 2 represents other lead systems of the SC
physics, that we will show can present strong departure from
the linear regime, in particular conditions that we will em-
phasize. The best semiconductor system from Fig. 3 is real-
ized with microdisks, thanks to the exceedingly good cavity
factors. We shall not enter into specific discussion of the

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4
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0.8

1.0

1.2 Photonic
crystalParameters from Khitrova et al. (2006)

Parameters used in this text

Atom

Micro-disk Pillar

1

2

3

FIG. 3. �Color online� Blue squares give the decay rates for the
cavity and quantum dot estimated by Khitrova et al. in Ref. 43 for
four references systems having achieved SC at this time: photonic
crystals and pillar microcavities nearby point 3, microdisks, and
atomic systems nearby point 2. With green circles, the three sets of
parameters used in this text. Points 2 and 3 average over their two
nearest neighbors and represent these systems. Point 1 represents a
very good system in very strong coupling that might be realizable in
the near future. Parameters are fractions because numerical compu-
tations have been done with arbitrary precision arithmetic �with the
values given�.
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advantages and inconvenient of the respective realizations
and the accuracy of these estimations. From now on, we
shall refer to this set of parameters as that of “reference
points,” keeping in mind that points 1 and 2 in particular
represent systems that we will refer to as a “good system”
and a “more realistic system,” respectively.

In Fig. 4, the three observable of main interest for a physi-
cal understanding of the system that we have just
discussed—na, n�, and g�2�—are obtained numerically for the
three reference points. Electronic pumping is varied from,
for all practical purposes, vanishing �10−3g� to infinite �103g�
values. Various cavity pumpings are investigated and repre-
sented by the color code from no-cavity pumping �dark blue�
to high, near diverging, cavity pumping �red�, through the
color spectrum. We checked numerically that these results
satisfy Eq. �28�. The overall behavior is mainly known, for
instance the characteristic increase until a maximum and
subsequent decrease in na with P� has been predicted in a
system of QD coupled to a microsphere.42 This phenomenon
of so-called self-quenching is due to the excitation impairing
the coherent coupling of the dot with the cavity: bringing in
an exciton too early disrupts the interaction between the

exciton-photon pair formed from the previous exciton.
Therefore the pumping rate should not overcome signifi-
cantly the coherent dynamics. Too high electronic pumping
forces the QD to remain in its excited state and thereby pre-
vents it from populating the cavity. In this case the cavity
population returns to zero while the exciton population �or
probability for the QD to be excited� is forced to one. The
cavity pumping brings an interesting extension to this
mechanism. First there is no quenching for the pumping of
bosons that, on the contrary, have a natural tendency to ac-
cumulate and lead to a divergence. Therefore the limiting
values for na when P�→0 or P�→� are not zero, as in the
previously reported self-quenching scenario.42 They also
happen to be different,

na
� � na�P� = 0� =

Pa − ��n�

�a − Pa
, �30a�

na
� � lim

P�→�
na =

Pa

�a − Pa
, �30b�

and therefore satisfy na
��na

�. Equation �30b� follows from
the decoupled thermal values for the populations, n�
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FIG. 4. �Color online� Populations and statistics of the points marked 1, 2, and 3 in Fig. 3. Each row shows the triplet na �first column�,
n� �second� and g�2��0� �third� for a given point �nth row corresponds to point n�. All plots share the same x-axis in logarithmic scale of P� /g
ranging from 10−3 to 103. All y axes are rescaled to its specific graph, at the exception of n� which is always between 0 and 1. The color code
corresponds to different values of Pa. Each color code applies to its row and is given in the last column. The qualitative behavior is roughly
the same for all points: there is a peak in na that is subsequently quenched as the dot gets saturated. In g�2�, there is on the other hand, a local
minimum of fluctuations that can be brought to the Poissonian limit of 1 �allowing for a lasing region� and maintained over a large plateau
in good cavities.
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→P� / �P�+���, and corresponds to a passive cavity where
the quenched dot does not contribute at all. In this case, the
emission spectrum of the system is expected to converge to

Sa��� =
1

�

�a/2
�� − �a�2 + ��a/2�2 , �31�

for the cavity, and S����=0 for the dot. The other limit when
P�=0, shows the deleterious effect of the dot on cavity
population. The dot fully enters the dynamics contrary to the
quenched case where it is subtracted from it.

Important application of SC for single-atom lasing are to
be found in good cavities 1 and 2, where the coupling g
��a ,�b is strong enough.45–49 Lasing can occur when the
pumping is large enough to overcome the total losses, P�

��a ,��, as seen in Fig. 4 with system 1. The effect of cavity
pumping depends strongly on the experimental situation. In
the case of an exceedingly good system, Pa has little effect
as soon as the exciton pumping is important, P���a. Cavity
pumping becomes important again in a system like 2, where
it enhances significantly the output power, at the price of
super-Poissonian statistics �g�2��1�. With a poorer system
like point 3, some lasing effect can be found with the aid of
the cavity pump: there is a nonlinear increase of na and g�2�

approaches 1 for g� P��10g. However, the weaker the cou-
pling, the weaker this effect until it disappears completely for
decay rates outside the range plotted in Fig. 3. In all cases,
the self-quenching leads finally to a thermal mixture of pho-
tons �g�2�=2� and WC at large pumping. Note that bad cavi-
ties exhibit, on the other hand, the best antibunching, since
they release the photon very quickly.

VI. WEIGHTS AND RENORMALIZATION

To give a complete picture of the spectral structure that
we have obtained analytically in Sec. IV, we need to consider
how this limiting case of vanishing pumpings evolves with
finite pumping. Here again, we have to turn to numerical
results.

Two cases of finite pumpings are shown in Fig. 5 for the
finite pumping counterpart of Fig. 2�a�, namely, �a� P�

=g /50 and ��b� and �c�� P�=g /10. We take �a=0 as the
reference energy for the remaining of this text. Panel �a�
shows how the limiting case �P��g� is weighted and devi-
ates rather lightly from the analytical result. The computation
has been made to truncation order nt=50 and we checked
that it had converged with other truncation orders giving the
same result. In the figure, only �p whose weighting in the
cavity emission Lp

a �Lorentzian part� is nonzero are shown,
although most of them are very small. If we plot only those
with �Lp

a��0.01, only the usual vacuum Rabi doublet �in
green in Fig. 2� would remain. In addition of the weight, also
the degeneracy �number of peaks� at a given resonance
should be taken into account to quantify the intensity of
emission at a particular energy. This information is not ap-
parent in the figures, where we only show in blue or red the
cases of positive or negative, respectively, weighting. In
some cases, many peaks superimpose with opposite signs,
possibly cancelling each other. We plot negative values last
so that a blue line corresponds to a region of only positive

values, while a red line may come on top of a blue line. This
figure gives nevertheless an insightful image of the underly-
ing energy structure and how they contribute to the final
spectrum as an addition of many emitting �or interfering�
events. In �b� we show a case of higher pumping, with the
same principal information to be found in the mapping of the
eigenvalues. The characteristic branch coupling of the
Jaynes-Cummings, still easily identifiable in Fig. 5�a�, has
vanished, and lines of external peaks directly collapse toward
the center. A zoom of the central part, panel �c�, shows the
considerable complexity of the inner peaks, forming
“bubbles” around the central line, due to intensity-aided SC
fighting against increasing dissipation that ultimately over-
takes.

The origin of the lines can be better understood if we plot
them as a function of pumping, as we commented in Sec. IV.
In Fig. 6, the same weighted peak positions �p are shown
�with the same color code� for point 2 as electronic pumping
is varied from 10−3g to 103g �Pa=0�. This last picture sup-
ports the idea that quantum effects �such as sub-Poissonian
statistics, Fig. 4� are observed at small pumpings, with opti-
mal range being roughly P��0.5g, where only the lowest
manifolds are probed. This is the range of pumping where
the Jaynes-Cummings manifold structure is still close to that
without pump. Further pumping pushes the lines to collapse,
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FIG. 5. �Color online� Spectral structure in the cavity emission
of the Jaynes-Cummings model as a function of �a /g, with some
electronic pumping ��=0, ��=0, Pa=0, �a=0�. Panel �a� is for
P�=g /50 and �b� and �c� for P�=g /10. Panel �c� is a zoom on the
central peaks of the entire picture �b�. In blue �red� are the peaks
with Lp

a �0 �Lp
a �0�.
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starting by the vacuum Rabi splitting which closes, evidenc-
ing the loss of the first order SC at P��4g. Here again we
observe this phenomenon of bubbling, with a sequence of
lines opening and collapsing, that makes it impossible to
specify the exact pump at which the transition takes place.
From this point, SC is lost manifold by manifold similarly as
in the case where �a was increased. When P��40g, all lines
have collapsed onto the center and will remain so at higher
pumpings. The dot saturates and the cavity empties with
thermal photons in a WC regime.

In these conditions, either from Figs. 5�b� and 5�c� or Fig.
6, a general definition of strong coupling in presence of
pumping is obviously very complex and remains to be estab-
lished.

VII. LUMINESCENCE SPECTRA AT RESONANCE

Now we have all the ingredients to present the final result:
the spectral shapes of the system in a broad range of con-
figurations and parameters. We cannot give a comprehensive
picture as any set of parameters is by itself unique, but will
instead illustrate the main trends, using specifically for that
purposes the three reference points of Fig. 3. They give a
good account of the general case and one can extrapolate

from these particular cases how another configuration will
behave. To get exact results for a given point, numerical
computations must be undertaken.

From now on, we shall represent in blue the spectra that
correspond to cavity emission and in violet those that corre-
spond to direct exciton emission. The main conclusions,
based on semianalytical results, are different for different
points or family of points. Point 1, which represents a very
good system, is the one that is best suited to explore quantum
effects. Its spectral shape is unambiguously evidencing tran-
sitions in the Jaynes-Cummings ladder, as shown in Fig. 7
with a clear “Jaynes-Cummings fork” �a quadruplet�. The
outer peaks at �1 are the conventional vacuum Rabi doublet,
whereas the two inner peaks correspond to higher transitions
in the ladder. Observation of a transition from outer to inner
peaks with pumping such as shown in Fig. 7 would be a
compelling evidence of a quantum exciton in SC with the
cavity. Figure 8 shows another multiplet structure of this
kind for point 1. The intensity of emission is presented in
logarithmic scale and for a broader range of frequencies, so
that small features can be revealed. Transitions from up to
the third manifold can be explicitly identified. With better
cavities, of course, more transitions can be singled out.50 The
decay from the second manifold, which manifests distinctly
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FIG. 6. �Color online� Spectral structure in the cavity emission at resonance as a function of P� /g for point 2 ��=0, Pa=0, �a=0�. In
insets, we zoom over the central peaks and the region 0� P� /g�5 �upper, in linear scale� and 10−3� P� /g�3 �lower, logarithmic scale�,
showing the complex structures that arise. In blue �red� are the peaks with Lp

a �0 �Lp
a �0�. At sufficiently high pumping, all eigenvalues have

collapsed to zero, defining an extreme case of weak coupling. Blue lines here come on top.

LUMINESCENCE SPECTRA OF QUANTUM… . II. FERMIONS PHYSICAL REVIEW B 79, 235326 �2009�

235326-11



with peaks labeled 2 �although it also contributes to peaks
labeled 0�, is already weak but still might be identifiable in
an experimental PL measurement. Higher transitions have
decreasing strength. This can be checked computing the
probability p�n� to have n photons in the cavity.41 Whenever
the mean number na is low �as is the case here�, this prob-
ability is maximum for the vacuum �p�n�� p�n+1� for all n�,
independently of the nature of the photon distribution �sub,
super, or Poissonian�. Only when na=1, in the best of cases
�for a Poissonian distribution�, does this trend start to invert
and p�1�= p�0�. This makes it impossible, even in the very
good system of point 1, to probe clearly and independently
transitions between manifolds higher than 3, as their weak
two outer peaks �approximately at ���n+�n−1�� are com-
pletely hidden by the broadening. A stronger manifestation of
nonlinear emission is to be found in the pool of pairs of inner
peaks from all high-manifold transitions �labeled 0 in Fig. 9�,
at approximately ���n−�n−1�. Not only the inner peaks
coming from different manifolds are close enough to sum up,
but also they are more intense than their outer counterparts.
This can be easily understood by looking at the probability,
Ic, of transition between eigenstates �� ,n� through the emis-
sion of a photon, c=a, or an exciton, c=�. This probability,

Ic
�i→f�� ��f �c�i��2, estimates the relative intensity of the peaks

depending on the initial, �i�, and final, �f�, states of the tran-
sition and on the channel of emission, c=a ,�.4 A discussion
in terms of the eigenstates of the Hamiltonian is still valid in
the regime of point 1 �very good system� at very low pump.
At resonance, neglecting pumps and decays, the eigenstates
for manifold n, are �n ,��= ��n ,0�� �n−1,1�� /�2. The outer
peaks arise from transitions between eigenstates of different
kind, �n ,��→ �n−1,��, while the inner peaks arise from
transitions between eigenstates of the same kind, �n ,��
→ �n−1,��. Their probability amplitudes in the cavity emis-
sion,

Ia
��→�� � ��n − 1, ��a�n, ���2 = ��n − �n − 1�2/4, �32a�

Ia
��→�� � ��n − 1, ��a�n, ���2 = ��n + �n − 1�2/4,

�32b�

evidence the predominance of the inner peaks versus the
outer ones, given that one expects the same weighting of
both transitions from the dynamics of the system. The dou-
blet formed by the inner peaks is therefore strong and clearly
identifiable in an experiment. On the other hand, in the direct
exciton emission, the counterparts of Eqs. �VII� are
manifold-independent and equal for both the inner and outer
peaks:

I�
��→�� � ��n − 1, ����n, ���2 = 1/4, �33a�

I�
��→�� � ��n − 1, ����n, ���2 = 1/4. �33b�

In this case, therefore, one can expect similar strength of
transitions for both the inner and outer peaks with a richer

FIG. 7. �Color online� Jaynes-Cummings forks as they appear in
the luminescence spectrum of a QD in a microcavity with system
parameters given by point 1 of Fig. 3 and for pumping rates
�Pa , P�� /g given by �a�, �0,0.057�; �b�, �0.225,0.087�, and �c�,
�0.001,0.27�. The two outer peaks at �1 correspond to the vacuum
Rabi doublet of the linear limit. Inner peaks correspond to transi-
tions with states of more than one excitation. Although the under-
lying structure is the same, many variations of the actual line shapes
can be obtained.

FIG. 8. �Color online� Expanded view in logarithmic scale of a
spectrum similar to those of Fig. 7, this time with �Pa , P�� /g
= �0.002,0.076�. Transitions up to the third manifold �shown in in-
sets� are resolvable. Others are lost in the broadening. The transition
energies of the Jaynes-Cummings ladder are shown by vertical lines
�up to the third manifold�. The Rabi peaks that correspond to tran-
sitions from the first manifold to vacuum �line 1� are in this case
dominated by higher transitions that accumulate close to the center
�line 0�.
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multiplet structure for the direct exciton emission.
In Fig. 9, we give an overview of the PL spectra as P� is

varied from very small to very large values. For point 1, as
we already noted, the cavity pumping plays a relatively mi-
nor quantitative role. Therefore we only show two cases, of
no-cavity pumping �first row� and high-cavity pumping �sec-
ond row�. As can be seen, there is no strong difference from
one spectrum with no-cavity pumping to its counterpart with
large cavity pumping. Third row shows the direct exciton
emission that, with no-cavity pumping, corresponds to the
first row. Indeed, one can observe the richer multiplet struc-
ture up to P��0.5g in the direct exciton emission, whereas
only inner peaks are neatly manifest in the cavity emission.

This region corresponds to a quantum regime with a few
quanta of excitations �and sub-Poissonian particle number
distribution, g�2��1� giving rise to clearly resolvable peaks,
attributable to the Hamiltonian manifolds. Therefore, a good
system �high Q and g� and a good QD �two-level� emitter
suffice to easily and clearly observe quantum effects. There
is no need of pumping stronger than it has been done in
present systems so far. In Fig. 10, the transition from the
quantum to the classical regime as seen in the PL spectra is
shown in detail.

In the region g� P��30g, the photon fluctuations are
those of a coherent, classical state, g�2�=1. Increasing pump-
ing with the intention to penetrate further into the nonlinear-

FIG. 9. �Color online� Point 1 of Fig. 3. Spectral emission over a wide range of electronic pumping P� /g from 10−3 to 103 showing the
three main regimes: multiplet emission, lasing, and quenching. Cavity pumping only affects quantitatively the main features of the emission
in this case of very strong coupling, so a small set is shown as representative enough: two upper rows �blue� correspond to cavity emission
for no and large cavity pumping, respectively, and lower row �violet� to the direct exciton emission for no-cavity pumping. The Jaynes-
Cummings fork is clearly resolved at small P� ��0.2g� and is enhanced by the cavity pumping. At higher electronic pumping �P�

�0.5g�, the multiplet structure collapses into a dominant doublet of inner peaks while the vacuum Rabi peaks melt into its shoulders. Then
the system is brought into lasing �g� P��30g� and is finally quenched �P��30g�.

FIG. 10. �Color online� Point 1 of Fig. 3. Details of the loss of the multiplet structure with increasing exciton pumping and zero cavity
pumping. The two upper rows �blue� correspond to the cavity emission Sa��� and the two lower �violet� to the exciton direct emission S����.
The spectral structure is richer in the exciton spectra that develop a Mollow-triplet-like emission.
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ity, merely collapses the multiplet structure into a single line,
as far as cavity emission is concerned. However, this does
not mean that the system is in weak coupling. In the direct
exciton emission, the rich SC fine structure has turned into a
Mollow triplet,22 that we discuss in depth below. In this re-
gion, the first manifolds have crossed to WC but higher
manifolds retain SC, bringing the system into lasing. At this
point, a change of realm should be performed favoring a
classical description. A last transition into thermal light and
WC, due to saturation and self-quenching, takes place at
P��30g that leads to a single central peak in the spectra.

In Fig. 11, we provide a zoom of the overall picture given
by Fig. 9 for the direct exciton emission. First three rows
show the evolution with electronic pumping P� �values in
inset� over a wide range of frequencies, up to �15g, while

the three last rows show the very same spectra, with a one-
to-one mapping with previous rows, only in the range of
frequencies �3g. The transition manifests to different scales,
with a rich fine multiplet structure in the quantum regime, as
seen in the zoomed-in region, to a monolithic triplet at higher
pumpings, as seen in the enlarged region. On the right, spec-
tra are superimposed to follow their evolution with pumping.
The two satellites peaks, at approximately �2�na, drift apart
from the main central one with increasing excitation, and in
this sense behave as expected from a Mollow triplet. Various
deviations are however observed, of a more or less striking
character. The most astonishing feature is the emergence of a
very sharp and narrow peak in the center that has been plot-
ted with its total intensity on the right panel to give a sense
of its magnitude. It is clearly seen in the zoomed-region how

FIG. 11. �Color online� Point 1 of Fig. 3. Incoherent Mollow triplets are observed in the exciton direct emission with broad satellite peaks
at approximately �2�na and a strong narrow central peak taking over a narrow resonance. Three upper rows show the spectra over the
interval ����15g allowing to see the satellites. Three lower rows are the same in the window ����3g, allowing to see the narrow resonance
and peak that sit at the origin. Values of the electronic pumping are given in the frame of the first three rows. Cavity pumping is zero but
influences very little the Mollow triplets. Rightmost figure superposes various spectra at increasing electronic pumping, showing the drift and
broadening of the satellites, and putting to scale the very strong coherent feature at the origin. The incoherent Mollow triplet appears thus
very differently from its counterpart under coherent excitation.
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this peak arises on top of the broad mountain of inner peaks,
surviving the collapse of the fine structure in the classical
regime. This thin central resonance appears when a large
truncation is needed. It is a sum of many contributing peaks
centered at zero, most of them with very small intensities.
Similar sharp resonances have been found in the coherent
excitation case.24 This region therefore shows all the signs of
a transition from a quantum to a classical system. At low
pumping, the inner peaks of all quadruplets coming from low
order manifolds are placed approximately at ���n−�n−1�
�0. Even when they are summed up to produce the total
spectrum, the nonlinear doublet is still resolved. At around
P��1.5g, manifolds high enough are excited so that for
them ���n−�n−1��0. This is a feature of a classical field
resulting in a Mollow triplet. Note that nothing of this sort is
observed in the cavity emission. The Mollow triplet, whether
in atomic physics with coherent excitation or in semiconduc-
tor physics with incoherent pumping, is a feature of the
quantum emitter itself, when it is directly probed. There is
therefore a strong motivation here to detect leak emission of
semiconductor structures. The overall features of this “inco-
herent Mollow triplet” differ from its counterpart namesake
in the strong asymmetry of the satellites and their increased
broadenings with pumping.

In Fig. 12, we show for point 2 a similar overall picture as
Fig. 9 does for point 1. Point 2 has larger dissipation and to
current estimates, corresponds more closely to the best sys-
tems available at the time of writing. As opposed to point 1,
a small cavity pumping has a strong influence on the result,
so we display more cases, namely, those that range from
no-cavity pumping �first row� to large cavity pumping �Pa
=g /5, fourth row� with two intermediate cases showing the
transfer of the emission from the linear Rabi doublet to the
inner peaks arising from transitions between higher mani-
folds.

The fifth row shows the corresponding direct exciton
emission, for the extreme cases of no �first row� and highest

�fourth� cavity pumping. The cavity pumping has the impor-
tant role of revealing the quantum nonlinearity of the system,
which was obvious for reference point 1 in any case but is
now invisible in the first row, where at increasing electronic
pumping, the vacuum Rabi doublet undergoes a rather dull
collapse. The same spectra could be expected from a linear
�bosonic� model, in the appropriate range of parameters. The
case of intermediate pumping is the most determining in this
aspect as far as cavity emission is concerned, while higher
cavity pumpings are more favorable for uncovering quantum
features from the direct exciton emission. This is mainly for
two reasons. One has to do with the influence of what effec-
tive quantum state is realized in the system, which we will
discuss in more details in connection with the third reference
point. The other being the excitation of higher manifolds
from the Jaynes-Cummings ladder that is now less accessible
because of the larger dissipation rates. Note how the disap-
pearance of the vacuum Rabi doublet with increasing P�

�with no-cavity pumping�, is of a different character than for
point 1, where higher P� resulted in an excitation of the
upper manifolds and a transfer of the dynamics higher in the
Jaynes-Cummings ladder, whereas in this case it essentially
results in a competition between only the first and second
manifold transitions. Cavity pumping can help climbing the
ladder with no prejudice to broadening. Finally, even if
blurry resolution or statistical noise of an actual experiment
would cast doubt on the presence of a quadruplet in such a
structure, the transfer with increasing cavity pumping of the
emission from outer �linear Rabi� to inner peaks �from the
second manifold transitions in this case� makes it clear that
the underlying statistics is of a Fermi rather than of a Bose
character.

Finally, we turn to point 3 of Fig. 3, i.e., to the case with
high dissipation rates. In this case, as shown in Fig. 13, the
Jaynes-Cummings structure is not resolved and the spectra
are mere Rabi doublets �or singlets�, closing in the WC.
These features, by themselves, without a quantitative com-

FIG. 12. �Color online� Same as Fig. 9 over the same range of P�, but for Point 2 of Fig. 3. In this case, cavity pumping has a strong
influence on the cavity luminescence spectra, so we show more cases, namely, Pa /g=0 �upper row�, �0.08 �second�, �0.11 �third� and
�0.15 �fourth� as well as the exciton direct emission spectra S� in the fifth columns with two cases of cavity pumping, Pa /g=0 �outer peaks�
and �0.15, corresponding to first and fourth rows of the cavity emission. Exciton spectra are less qualitatively affected by the cavity
pumping. With electronic pumping only, no particular feature is observed in the cavity emission. In this case, cavity pumping makes a huge
difference by revealing the underlying Jaynes-Cummings ladder.
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parison with other models, say nothing about the nature of
the emitter. The linear model, in SC for this system, always
leads to a well resolved Rabi doublet in both channels of
emission at all pumpings. In the present model, too high a
cavity pumping brings the first manifold into WC. In con-
trast, a small cavity pumping again helps to resolve the Rabi
doublet. The main physics at work here is the one that has
been amply detailed in part I of this study, in the linear case,
namely, the effective quantum state realized in the system by
the interplay of pumpings and decay. A photonlike quantum
state has dispersive corrections that push apart the dressed
states �Lorentzians� and therefore enhances the visibility and
splitting of the lines. The argument does not adapt itself ex-
actly, for instance line splitting is not helped or revealed in
the exciton emission for most cases because in this case ex-
citon broadening always spoils resolution of the splitting. In
the linear case, there would be a complete symmetry �en-
hanced splitting in one channel of detection implies reduced
visibility in the other channel�. This shows again that the
same system would lead, in the nonlinear regime, to different
results with a bosonic or a fermionic exciton, although both
spectra can only feature a doublet or a singlet. A fundamental
difference between the models is that the pumps Pa, Pb, al-
ways reduce the total broadening of the lines ��+� while P�

increases it. The contribution of pump to the line positions
differs greatly from the bosons, as not only P� carries a
different sign but also this contribution depends on the mani-
fold. The statistics make also an important difference. Oppo-
site to the wide variety of photon distributions found with a
fermion model, cavity and exciton are always in a thermal
state for a boson, without quenching or lasing. The issue of
the underlying statistics could therefore be settled in photon-
counting experiment.8,36 Figure 4 shows that such systems
�especially when �a�1 and ��→0� have the advantage over
better cavities that at low electronic pumping and vanishing
cavity pumping, the system generates antibunched light, suit-

able for single-photon emitters �though not on demand�.

VIII. LUMINESCENCE SPECTRA WITH DETUNING

In semiconductors, the detuning between bare modes is a
parameter that can easily be varied and which provides use-
ful information of the SC physics. Strong coupling is better
studied at resonance, and detuning is mainly used to help
locate it, by finding the point where anticrossing is maximum
and level repulsion stationary. In a fitting analysis of an ex-
periment, it brings a lot of additional data at the cost of only
one additional fitting parameter. In the Fermion case, it also
has the benefit of uncovering new qualitative behavior of the
PL line shapes that are strongly restricted by symmetry at
resonance.

Figure 14 shows the vanishing pumping case of �p in Eq.
�16� with detuning, i.e., the imaginary part of Eq. �18� for the
first row that corresponds to the first manifold �also, the bo-
son case� and of Eq. �19� for the second and third rows that
corresponds to the second and third manifold, respectively.
Fourth row is a superposition of all manifolds up to the 15th
one. Detuning is varied in columns, from no detuning �first
column� to twice the coupling strength �fifth column�. Nega-
tive detunings are symmetric with respect to the x axis. The
line opening is common to all manifolds, but note the differ-
ent behavior of the first manifold �linear or boson case� and
higher manifolds: in the first case, one line collapses toward
the center �on the cavity mode� while the other recedes away,
toward the exciton mode. In the nonlinear case, there is up to
four lines, and outer lines are both repelled away while inner
lines get both attracted toward the cavity mode, at the center.
As we discussed, the total doublet of inner peaks is intense
and will dominate. For cases with high dissipation, there is
little or no particular insights to be gained from detuning, as,
again, most features are lost in broadening. We restrict out
attention to points 1 and 2 in what follows. In Fig. 15, PL

FIG. 13. �Color online� Point 3 of Fig. 3. Spectral emission for the indicated electronic pumping P� /g: 10−3 �first column�, �0.23
�second�, �7.56 �third, lasing� and 1000 �fourth, quenching�, for Pa /g=0 �thick line with no coloring�, �0.20, �0.81, and �1.42 as
indicated in the top left panel, and similarly for others �apart from the case Pa=0, inner peaks corresponds to higher pumpings�. In this
system, broadening is always too high to allow any manifestation of the underlying Jaynes-Cummings structure. The structure could be
mistaken for a bosonic system �or the other way around�.
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with detuning is shown for point 1 in panels �a�–�d� and for
point 2 in panel �e�. Panel �d� is a magnified view of panel
�a�. It is seen clearly how the doublet of inner peaks essen-
tially remains fixed at its resonance position independently
of the exciton position. Only at very high detunings does the
doublet collapse onto the center. The vacuum Rabi doublet
however appears as an anticrossing of the exciton bare mode
with the doublet of inner peaks �that eventually becomes the
cavity bare mode�. Panel �a� is at small electronic pumping
and �b� and �c� at ten times larger electronic pumping �both
no-cavity pumping�, for the cavity and direct exciton emis-
sion, respectively. Again, lower electronic pumping is more
prone to reveal rich quantum features. In panel �b� only the
inner nonlinear doublet is visible, with a transfer of the emis-
sion intensity from one peak �essentially fixed� to the other.
The resonance case is plotted in the third panel on first row
�third row for the exciton emission� of Fig. 10. The linear
Rabi doublet, which trace is seen faintly undergoing anti-
crossing with the pinned central peaks, provides small shoul-
ders. In general, PL with detuning in the Fermi case shows a
very characteristic behavior that cannot be mistaken with a
conventional �bosonic� anticrossing experiment.

In panel �e�, the case of a more realistic system is shown
with detuning. The pinning of the inner peaks is less obvious
in this case, although if one draws a vertical line at the reso-
nance, through the minimum of the doublet, one observes
that this minimum is fixed. As a result, triplets are obtained

in the cavity emission spectra that are of a very distinct na-
ture than the Mollow triplet observed in the side �exciton�
emission of point 1. The triplets involving the nonlinear dou-
blet are a manifestation of the quantum regime overcoming
broadening while the Mollow triplet is a manifestation of the
lasing regime.

IX. DISCUSSION AND CONCLUSIONS

We now give an overview of our results on the spectral
line shapes of a QD that obey Fermi statistics, in SC with the
single mode of a semiconductor microcavity, and extend our
previous exposition with a more general discussion. The
main results of our analysis are as follow.

Manifestations of nonlinearities in the SC physics of a
genuine quantum emitter are, counter to naive expectations,
no better sought at high pumpings, looking forward to large
number of excitations. The quantum regime involves a few
quanta only. It is achieved and better manifests with low
pumpings in high quality samples �meaning that the exciton-
photon coupling should be much higher than the decays and
dissipation rates�. Higher pumpings will cross to the classical
regime where the quantumness of the system—that manifests
with clearly separated peaks attributable to well identified
transitions in the Jaynes-Cummings ladder—will give over
to a very large number of very small correlators, conveying
that a continuous field is taking over quantum discretization.

0 1 2 30 1 2 30 1 2 30 1 2 3

-4
-2
0
2
4

-4
-2
0
2
4

-4
-2
0
2
4

-4
-2
0
2
4

0 1 2 3

FIG. 14. �Color online� Positions �p /g of the lines around �a=0 in the luminescence spectrum with detuning and in the absence of pump.
Columns correspond to various detunings, first column being the case of resonance �cf. Fig. 2�. First three rows show in isolation the first,
second, and third manifold, respectively. First manifold corresponds to the Boson or linear case �Ref. 1�. Fourth row shows all manifolds
together. Left-bottom panel is detailed for positive �p in Fig. 2.
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High pumping that brings the system into a lasing regime has
a behavior that is better expressed by classical fields and
classical physics. The crossover from a quantum to a classi-
cal description is an interesting problem that such a model—
the dissipative Jaynes-Cummings Hamiltonian with incoher-
ent pumping–seems particularly well suited to track
theoretically.

Cavity pumping is an important factor to take into ac-
count. First because of its relevance in an actual experiment,
where it can arise due to secondary effects such as other dots
�not in SC� emitting in the cavity, temperature, or a variety of
other factors. It could conceivably also be input directly by
the experimentalist. Cavity pumping has many virtues for the
physics of SC in a semiconductor. Because the typical type
of excitation is electronic and the typical channel of detec-

tion is photonic, SC is hampered as compared to the micro-
wave cavity case where detection and excitation are on the
same footing �both directly on the atom�. A cavity pumping
can help balance this situation and provide an effective pho-
ton character to the states realized in the semiconductor, en-
hancing, or even revealing spectral structures. This phenom-
ena manifest also in the Boson case and has been
investigated and explained in its full details in part I of this
work. Also in the Fermion case, cavity pumping is beneficial
for the same reasons, and it can help go beyond the linear
regime �with a Rabi doublet� to the nonlinear quantum re-
gime, typically by making emerge additional quadruplets of
the Jaynes-Cummings, with a doublet of inner peaks to be
sought as the strongest signature. Finally, an increasing cav-
ity population narrows the line rather than broadening it,

FIG. 15. �Color online� Anticrossing of the luminescence lines as detuning �=�a−�� is varied. Here, �a=0 is fixed and the QD bare
energy is tuned from below the cavity �positive detuning� to above �negative detuning�. Panels �a�–�d� correspond to point 1 and panel �e�
to point 2. �a�–�d� are at zero cavity pumping, Pa=0. �a� and �d� are for P�=0.03g ��d� is a zoom of �a�� and �b� and �c� for P�=0.3g. �a�,
�b�, and �d� are the cavity emission Sa��� and �c� the direct exciton emission S����. �e� is for P�=10−3g and Pa=g /5 �cf., seventh row, first
column of Fig. 12�. The nonlinear central peaks give rise to very characteristic anticrossing profiles.
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contrary to a saturating QD, and thermal fluctuations allow
to probe gently high rings of the Jaynes-Cummings ladder.

The counterpart of a Mollow triplet is observed in the best
samples, in the direct exciton emission. It features a narrow
resonance in the center of the spectrum that turns into a sharp
emission line. The incoherent Mollow triplet is a striking
manifestation of a crossover from the quantum to the classi-
cal limit, with a series of many peaks easily identifiable with
dressed quantum states, melting into a monolithic structure
of reduced complexity �a triplet� with no identifiable contri-
butions from separable processes. When the Mollow triplet is
fully formed, the cavity mode is in the lasing regime. The
Mollow triplet is lost as the system is quenched with no
return to quantum behaviors. This provides the general se-
quence of regimes with increasing electronic pumping: quan-

tum regime, lasing �classical� regime, and quenched �also
classical but thermal� regime.
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