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   Abstract : The physics of strong light-matter coupling of a quantum 
dot in a microcavity is described at its most fundamental level, that 
of the Jaynes–Cummings Hamiltonian. Dissipation, dephasing and 
incoherent excitation are included in the Lindblad form to account for 
the most important experimental degrees of freedom. We focus on the 
photoluminescence emission and elucidate the complexity that can arise 
from the delicate interplay of pumping and decay. A unifi ed picture 
is presented of several regimes of excitation describing spontaneous 
emission, quantum nonlinearities and lasing. The theoretical fi ndings 
are fully supported by experimental observations when systems with 
suffi ciently high fi gures of merit are within reach.  
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 9.1     Introduction 

 The past few years have witnessed rapid progress in the understanding of 
the nature of light-matter interaction in photonic semiconductor nanostruc-
tures. Such systems offer an appealing implementation of cavity quantum 
electrodynamics (QED) in the solid state, an avenue of exploration openly 
declared by Weisbuch and co-workers (1992) when they reported the fi rst 
demonstration of strong light-matter coupling in a semiconductor. This semi-
nal achievement utilised a planar quantum well (QW) embedded in a 2D 
microcavity, for which it is generally agreed that the normal-mode coupling 
that it realizes is a classical effect (Khitrova  et al ., 2006) as it is well described 
in terms of Maxwell’s equations coupled to the excitonic susceptibility. The 
primary focus quickly became to reduce the dimensionality of the system 
and move from 2D towards 0D in order to exploit cavity QED physics in the 
purest form with the minimal phase-space. Andreani  et al . (1999) showed that 
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strong coupling (SC) in 0D systems was within reach of the semiconductor 
quantum emitters, and this was soon reported by Reithmaier  et al . (2004) and 
Yoshie  et al . (2004) in two consecutive and highly cited letters to  Nature . 

 Cavity QED is a fundamental and, thus, highly multidisciplinary fi eld. It 
was pioneered by Raizen  et al . (1989), Thompson  et al . (1992) and others using 
atoms in macroscopic cavities (Haroche and Kleppner (1989) give a good 
overview of the early years) but has now spread to various systems such as 
superconducting circuits (Wallraff  et al ., 2004; Astafi ev  et al ., 2007) or nanome-
chanical resonators (Aoki  et al ., 2006). At the heart of the physics governing 
this diverse array of systems is the Jaynes and Cummings (1963) Hamiltonian 
that describes the interaction at the quantum limit of one- emitter and a 
 single-mode of light. It is a widely studied system, with authoritative reviews 
such as that of Shore and Knight (1993), and is often alluded to as being a cor-
nerstone of quantum optics. One has many options to place it in the semicon-
ductor context, the most natural being to consider the most straightforward 
experimental data, for example the observed splitting in photoluminescence 
(PL), and describe results by exactly diagonalizing the coupling Hamiltonian. 
We will show that this is not appropriate. Another approach is to include the 
most relevant semiconductor degrees of freedom, keeping the system as close 
as possible to the original Jaynes–Cummings Hamiltonian, including spins or a 
few excited states. Results in this direction have been obtained by Yamaguchi 
 et al . (2009), Ritter  et al . (2010) and del Valle  et al . (2010). However, since the 
system is quantum, it becomes quickly intractable and one needs to turn to 
other methods. Examples include those from semiconductor quantum optics 
(Haug and Koch, 1990) that use quantum many body theory and methods 
such as cluster expansion (Kira and Koch, 2008) to accommodate a more 
complex description of the specifi c properties of the semiconductor system 
under study. Leading work in this context has been presented by Gies  et al . 
(2007), Richter  et al . (2009), Carmele  et al . (2010) and Wiersig (2010), some 
aspects of which are featured in this volume. 

 When we addressed this problem theoretically, somehow to our surprise 
we realized that there was still much room for new physics, even at the 
most fundamental level of description very close to the original Jaynes and 
Cummings model. With a few elementary but, with hindsight, obvious and 
necessary assumptions, we could achieve the best level of agreement with 
experimental data reported to date (Laussy  et al ., 2008; Laucht  et al ., 2009a). 
Much of the present text will give an overview of this claim. The point where 
one can account accurately for the observed data – gaining some nontrivial 
understanding in the process – is a starting point to explore and predict 
new regimes of operation. This will constitute the second part of our text, 
where we will discuss some aspects of the nonlinear quantum regime and 
lasing. Throughout, we will focus on the luminescence emission, and more 
specifi cally on the spectral lineshapes. We will also limit to the case of a 
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single quantum dot (QD) (see Laussy  et al . (2011) for a generalization to  N  
emitters). For brevity we will leave aside technical details and derivations, 
mainly presented by Laussy  et al . (2009) and del Valle  et al . (2009). Much of 
this work has later been compiled and detailed by del Valle (2010). 

 From the experimental point of view, the seminal 2004 reports of strong 
coupling in 0D semiconductor systems – in a pillar and a photonic crystal, 
respectively – have been naturally reproduced and extended by others, 
shortly thereafter by Peter  et al . (2005) in a microdisk, then by Hennessy  et al . 
(2007) and Press  et al . (2007) who demonstrated the single-quantum charac-
ter of the interaction, etc., and ourselves, in the work presented by Laucht 
et al . (2009a, 2009b), the main results of which we will summarize here.   

 9.2     The Jaynes–Cummings model 

 The most fundamental quantum model of light-matter interaction is given 
by Jaynes and Cummings (1963) (JC), who describe the case of exactly 
one-emitter – a two-level system with annihilation operator  σ  – coupled 
with strength  g  to a single mode of the electromagnetic fi eld – an harmonic 
oscillator with annihilation operator a  . The JC Hamiltonian reads (in units 
where ħ = 1):  

H a gaa ( )a Δ + g ( )a +aωaa a +a aa a ( σ σ a+† †+ ( )Δ+ ( σ .  [9.1]  

 We have introduced Δ = ω  a  −ω σ , the detuning between the bare cavity 
frequency ω  a   and bare emitter frequency ω σ  and will, in the following, take 
ω  a   as the reference point for all the energies (ω  a   = 0). A remarkable fea-
ture of Equation [9.1] is that, as it conserves the number of excitations, its 
quantum dynamics is closed in 2 × 2 Hilbert subspaces and can therefore 
be solved exactly. We will encounter | k ±〉 the ‘ dressed states ’, or ‘ polaritons ’, 
that arise in this process: these are pairs of states (labelled by ±) that group 
into ‘manifolds of excitation’ (labelled by  k ). These are also popularly called 
‘rungs’ to refl ect the ladder like nature of the resulting excitation spectrum. 
The  k th manifold has  k  quanta of excitation, distributed over the light fi eld 
that is unbounded in its number of photons, and the emitter that can only 
be empty or excited. 

 The most fundamental and by far the most studied light-matter coupling 
case involves only one quantum, the system oscillating between the single-
photon |1, 0〉 and the excited emitter |0, 1〉. The dressed states at resonance 
are | / 2/( )| , | ,0| 1| ,1| . As a result of this oscillation, the PL spectrum 
splits into a doublet –  the Rabi doublet  – as pointed out in this context by 
Sanchez-Mondragon  et al . (1983). As there is only one quantum exchanged 
between the two fi elds, the phenomenon is known as  vacuum Rabi splitting  
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(VRS). We shall be greatly concerned in the following with this case but 
also with the one when the emitter is dressed by photons rather than by the 
vacuum. 

 Three years after Sanchez-Mondragon  et al . (1983), it was noted by 
Agarwal and Puri (1986) that in order to compute a self-consistent PL spec-
trum, one has to take into account leakage of the photons from the cav-
ity. With hindsight, this seems obvious since how can one detect, otherwise, 
luminescence? This has the consequence of linking any single manifold with 
all the others below, in a cascade of emission, with the vacuum as the fi nal 
(long-time) solution.  

 Three years later, Carmichael  et al . (1989) completed the picture by includ-
ing also a fi nite lifetime for the emitter. Theoretically, a simple and power-
ful way to include dissipation is to shift to a density matrix ρ rather than a 
wavefunction |ψ〉. The equation of motion that supplements the Schrödinger 
equation is then the Liouville–von Neuman equation:  

∂ = [ ]+tρ = − [ ] ρi[[ L ,]+ ρL   [9.2]  

 where the Liouvillian  L  describes the non-unitary, dissipative dynamics. For 
the case of lifetime, with decay rate γ  c   ( c  =  a ,  σ  for the cavity and dot, respec-
tively), the Liouvillian reads:  

L c c cc

c a

ρ
γ

ρ ρc cc c ρcc
σ

cρcc(( )∑ 2
2 † †c †

,

,   [9.3]  

 using  c  both as an index for parameters and operators. The eigenenergies 
can still be obtained exactly in the presence of this form of dissipation. Their 
derivation is given by del Valle  et al . (2009). They read:  
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  [9.4]  

 The eigenenergies [9.4] are complex as a result of the dissipative part. 
They are shown in   Fig. 9.1a  for the fi rst three manifolds (and vacuum |vac〉), 
where we have broadened the resonance at ℜ ±( )±

k  with their imaginary 
part to refl ect the linewidths of the transitions. This structure is known as 
the ‘ Jaynes–Cummings ladder ’. The energies of the states on the JC ladder 
cannot be observed directly, but arise when the system undergoes a transi-
tion from one state to the other. Such a transition naturally occurs when 
one excitation decays. The type of decay described by Equation [9.3] brings 
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it (to fi rst order) to the neighbouring manifold below. A possible transition 
is sketched in   Fig. 9.1a  bringing the system from |2+〉 to |1−〉. There are two 
main channels of emission for this transition: by the cavity mode or by the 
QD into a continuum of background modes (also known as leaky modes). 
They differ in one important aspect: the cavity suppresses transitions involv-
ing a change of the polariton branch (± → ∓) and strengthens same-branch 
transitions (± → ±) with emitted intensities proportional to:  

k a k
k k

± =
−k 1

4

2
2

, ,a k ,   [9.5]   

k a k
k k

=
−k 1

4

2
2

, ,a k ,∓   [9.6]  
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 9.1      (a) The Jaynes–Cummings ladder, up to the fi rst three rungs. Bare 

states are shown in dashed lines in the fi rst manifold. Their crossing 

point marks the resonance. Transitions between neighbouring rungs 

account for the observed peaks in the spectra, as sketched by the 

emission of a photon from the initial state |2+〉 to the fi nal one |1−〉. 
The set of frequencies that arise in all possible such processes is shown 

in (b), (c) with, in thick lines, the upper and lower polaritons of the 

fi rst manifold, which can be seen in isolation by exciting the system 

weakly. Inner transitions are stronger in the cavity emission, but they 

are closely spaced. All nonlinear transitions have a large broadening, 

increasing with the manifold number, as shown in (d). Parameters are 

those estimated for the experiment discussed in the text: γa/ g  ≈ 1.15 and 

γ σ / g  ≈ 0.00334.  
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 whereas the QD emission is equal in any of the four possible 
combinations:  

k k k k =k k±
1
4

2 2
, , , ,k .kk k± =,kk , ∓   [9.7]  

 This is because in a transition of the type of Equation [9.5], the fi nal and 
initial states are, up to a photon, identical. The emitted photon can be any 
of the  k  available ones, and the transition is, therefore,  k -fold enhanced. 
This is a manifestation of Bose statistics that follows from the indistinguish-
ability of which photon is eventually emitted. In the limit of high number of 
excitations, the photon fi eld factors out and becomes classical. On the other 
hand, regardless of the state of the system (and the number of excitations), 
the emission by the dot involves a complete alteration of the quantum state, 
since annihilation of the QD excitation collapses it onto a bare state. As a 
result, whereas photons emitted by the cavity and QD both carry away the 
same energy difference between initial and fi nal states, the QD photon is 
a better probe of the system dynamics, which it perturbs intrinsically. The 
energy difference involved in both cases reads:  

E E
k k

k kEβEβk (( )−

−
1

1 *
,   [9.8]  

 with β  k   and β k–1  = ±, yielding four resonances for each manifold, which we 
will term  outer transitions  for (β  k  , β  k−1  ) = (+, −) or (−, +) and  inner transitions  
for (+, +) and (−, −). These transitions are shown in   Fig. 9.1b  and, zoomed 
on the inner transitions, in   Fig. 9.1c . A favoured way of probing these tran-
sitions is the PL that this gives rise to. Through an argument known as the 
input–output formalism, the PL spectrum corresponds to the mean number 
of excitations at frequency  ω , that is, in second quantization formalism, as an 
average over the number operator for this mode,  S   c  (ω) ∝ 〈 c  † (ω) c (ω)〉 where 
again  c  =  a  for the cavity PL spectrum, or  c  = σ for the QD direct emission. 
By Fourier transform from frequency  ω  to real time  t , we obtain the PL 
with the Wiener–Khintchin theorem: c ( ) ( ,t ) p( )i .( ) τG) ( ,t( ) )) τℜ ∫ ∫∞

0 d dt  
Computing from Equation [9.2] the quantity of interest, the two-time pho-
ton autocorrelator  

G( )1 ( )t ( )t ( )t +c c)) = ( )t ( ))t +†   [9.9]  

 is readily achieved using the so-called quantum regression theorem (QRT), 
which is a standard quantum-optics technique that we will not develop here. 
However, we emphasize that in the course of applying the QRT, a physically 
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transparent decomposition of  S   c  (ω) – presented and amply detailed by 
Laussy  et al . (2009) and del Valle  et al . (2009) – can be performed semi-
analytically in terms of Lorentzians and dispersive parts:  

S L Kc pLcLL p
p
c p

π
γ ω ω( )

( )pω ω + ( )pγ
−

( )pω ω( ) ( )p

⎛

⎝

⎜
⎛⎛

⎜
⎝⎝

⎞

⎠

⎟
⎞⎞

⎟
⎠⎠

⎟⎟1 2

) ( )pω ω + ( pγ
2 2( ) 2 2( )pp

∑
  [9.10]  

 where ω  p   are the possible transitions in the system, that is, the real part 
of Equation [9.8] and γ  p   their corresponding broadening (full width at 
half maximum, FWHM), that is, twice the imaginary part of Equation 
[9.8]. The Lorentzian corresponds to the decay of a dressed state, this 
lineshape being the one that arises from the decay of a particle with 
a fi nite lifetime. The dispersive part is an interference term that arises 
when the dressed states overlap in energy, and affect each other. This is 
the case for instance when the system is not in very strong coupling or 
when pumping pushes dressed states against each other, as we shall dis-
cuss later. The problem of PL spectra is, therefore, reduced to computing 
the coeffi cients  K p   and  L p   that depend on such factors as the dynamics, 
the initial state, the channel of detection, etc. We will now show that, 
although the essential physics is indeed embedded in the JC ladder, one 
should not limit one’s understanding to this picture only, but should con-
sider the possible impact of the weighting coeffi cients, which can disguise 
the fi nal result in a form far from that one has in mind from the sole 
  Fig. 9.1 . 

 The thick lines in   Fig. 9.1  are the VRS that arise from transitions from 
the fi rst manifold to the vacuum, a situation realized at very small pump-
ing when only the fi rst rung is excited. The amount of signal is proportional 
to the amount of time the fi rst manifold is excited and available to emit. 
As long as only this fraction of occupancy is enhanced without populating 
higher manifolds, the system is in a linear regime. This is the fi rst regime 
to achieve in the investigation of quantum light-matter coupling and the 
one which has, therefore, attracted the most experimental attention. At the 
time of writing, this starting point is still a challenge for most experimental 
groups and only a handful of laboratories are able to produce it on a regular 
basis. We shall discuss it thoroughly in the following sections, survey the 
main experimental fi ndings obtained by our group, which are representative 
of the situation at large, and in the latter sections come back to the higher 
rungs of the ladder, or higher manifolds of excitation. This is a topic of con-
siderable current research activity and one for which little if any compelling 
experimental results are currently available.   
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 9.3     Luminescence spectra  

 9.3.1     Luminescence spectra of spontaneous emission 

 To describe the linear regime, it is instructive to start with the simplest pos-
sible consideration, which is that of spontaneous emission of an initial state. 
In the atomic-cavity framework, one has in mind the excited state of the 
atom as an initial state. When Andreani  et al . (1999) initiated the quest for 
this regime in the solid state, they also considered the spontaneous emis-
sion of the QD. In the semiconductor case, in contrast to the atomic-cavity 
confi guration, the cavity emission spectrum is more conveniently detected, 
rather than the radiation fi eld of the emitter. The calculation for cavity emis-
sion was performed by Cui and Raymer (2006) and extended by Naesby 
 et al . (2008) to the case of nonzero detuning.  

 Furthermore, semiconductors are complicated solid state systems where 
even in an epitaxially perfect structure, the QD is coupled to many baths 
and other degrees of freedom (carriers in higher states, phonons, etc.) To 
describe incoherent excitation through the wetting layer, one cannot always 
assume the preparation of a pure initial state for the QD alone. For instance, 
injecting electron-hole pairs to bring the QD of interest in its excited state 
could also excite many other QDs, not in SC, which capture these excita-
tions and convert them into photons. As a result, the strongly coupled dot 
effectively starts the dynamics with a photon as the initial state. Tarel  et al . in 
this volume show that even in samples where only one QD is present, there 
are other routes for the system to populate the cavity. As a consequence, in 
a semiconductor, the  spontaneous emission of a photon  is a natural scenario. 
This has great bearing on the problem because the PL spectrum can differ 
greatly from one initial state to the other. This is shown in   Fig. 9.2  where 
the cavity PL spectrum is displayed for the excited QD (solid), a photon 
(dashed) or an upper polariton (dotted) as an initial state. Note that the 
Rabi splitting can be more readily resolved (larger splitting and larger con-
trast) when the initial state of the system is a photon rather than an exci-
ton. The reason why is clear physically: the cavity PL spectrum is a Fourier 
transform of Equation [9.9]. When not in very strong coupling, starting as a 
photon triggers the  G  (1) ( t , τ) dynamics from the beginning, whereas starting 
as an exciton, the two-time photon autocorrelator remains initially zero (the 
photon fi eld being zero) and has to wait a Rabi cycle to be fully initialised. 
In the intervening time, decay has damped intensity of both fi elds and the 
 G  (1)  dynamics is weakened by as much, explaining why the Rabi splitting is 
spoiled. In the case of the polariton, the difference is even qualitative since 
the spectrum reduces (almost perfectly) to a singlet, namely, the polari-
ton line (one would indeed not expect a lower polariton to show up when 
decaying an upper polariton). The dynamics of  G  (1) ( t , τ)is shown in   Fig. 9.2  at 
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three different times for these three different initial conditions, illustrating 
the above discussion. Note that the dynamics when starting as a polariton is 
mostly decaying in  t  whereas photons and excitons undergo non-stationary 
oscillations. This simple point is of considerable importance because there 
is a popular practice of reading off the splitting between the dressed states 
from the splitting in PL, that is, in Equation [9.10], to ignore the effect of the 
dynamics. We shall see in the following that the error induced by doing so 
can be arbitrarily large. 

 To conclude this section, let us remark that we have discussed how the 
channel of detection – direct QD or cavity emission – infl uences the observed 
PL through arguments of strength of transition from higher excited states 
in the ladder such as those contained in Equations [9.5]–[9.7]. By symmetry, 
one can see that the initial quantum state also plays a similar role in the QD 
emission. In the linear regime, the following correspondence is satisfi ed by 
interchanging  a  and  σ  everywhere in the equations and their solutions: the 
cavity PL spectrum of an exciton (respectively, photon) as the initial state is 
the same as the QD PL spectrum of a photon (respectively, exciton) as the 
initial state. Therefore, when exciting the emitter, it is more advantageous to 
observe its spontaneous emission, as is indeed the case with atomic-cavity 
QED, for instance. This is one reason why QDs in microcavities struggle to 
exhibit SC, a tendency that becomes more acute for more ‘atom-like’ systems. 
We will show below that strong coupling experiments with semiconductor 
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 9.2      (a) PL spectra of spontaneous emission for three different initial 

states: an exciton |0, 1〉 (solid line), a photon |1, 0〉 (dashed) and an 

upper polariton |1+〉 (dotted). The initial state infl uences signifi cantly, 

sometimes qualitatively, the observed spectrum. (b) Corresponding 

Rabi oscillations of  G  (1) ( t , τ) at three different times, accounting for 

these differences. Starting as a photon gives more time for the system 

to undergo coherent dynamics and thus leads to a better resolved 

Rabi splitting. Note that the last row has a different scale for the y-axis. 

Parameters are the same as before: γ  a  /g ≈ 1.15 and γ σ   /g ≈ 0.00334.  
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QDs have been aided by a so-called  cavity feeding  mechanism that favours 
the initial state of the system to be photon-like. For systems in very strong 
coupling, such as in circuit QED, the Rabi dynamics is sustained over such a 
large number of cycles so that its initial state, or channel of detection, does 
not matter. In this case one can focus on the pure quantum dynamics of 
Equation [9.1] with little importance given to dissipation. This is a luxury 
not yet affordable in semiconductors.   

 9.3.2     Luminescence spectra under incoherent pumping 

 From a practical point of view, the fact just discussed – that the initial quan-
tum state affects the observed PL spectrum – could be used experimentally 
to favour observation of the splitting. There has not been, so far, any such 
attempt in this direction, neither to control nor to merely alter the quantum 
state of the system, making it more photon-like or exciton-like on purpose. 
Naturally, exciton, photon or polariton are particular cases, and a realistic 
situation would call for an arbitrary mixture of exciton and photon. Here 
again, the density matrix formalism becomes handy, since instead of con-
sidering a pure initial state, one can now contemplate statistical mixtures. 
However, rather than computing the PL spectrum of a given state ρ at  t  = 0 
it is more rewarding to add self-consistently the excitation process in the 
description of the system. This has been done for instance by Perea  et al . 
(2004) for excitonic pumping. As we have said that both the expected QD 
excitation scheme and its derived cavity feeding are conceivable in semi-
conductors, we take the more general approach of including two pumping 
schemes, cavity pumping at rate  P a   and exciton pumping at rate  P  σ . We shall 
be concerned in this text with incoherent pumping only, in which case the 
equation of motion for the density matrix is supplemented with, following 
del Valle  et al . (2009):  

L
P

c cc cccPP

c a

ρcρ c c ρ ρcc
σ

−cc cc(( )∑ 2
2

,

.† †c ccρccccc †   [9.11]  

 At the outset, there is no reason to constrain  P c   in any particular way, and 
we shall assume for generality that they are independent, though they can 
assume a more particular form from a given underlying microscopic mech-
anism. For instance, the particular case discussed above of cavity feeding 
by weakly coupled spectator QDs is treated by Averkiev  et al . (2009) and 
del Valle and Laussy (2010a). Yao  et al . (2010) criticized divergences that 
arise, for instance when  P   a   > γ  a  , and concluded that the master equation must 
be unphysical. They considered the particular case of our model where γ  a   = 
κ ( n−  + 1) and  P  a  = κ n−  are linked through thermal equilibrium relationships 
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as the only possible alternative. Such divergences are, however, intrinsic in 
this system, they mark the onset of lasing, and are present even with no 
explicit cavity pumping in the limit of vanishing γ  a  , in which case the coher-
ence built by the QD is enough to grow the cavity fi eld without bounds. 
This shows that divergences certainly do not invalidate the more general 
unconstrained model, which always has a proper fi nite-time solution (only 
its steady state is not always assured, which is, however, perfectly acceptable 
for a dynamical system).  

 Although we are concerned with spectral lineshapes in this text, we have 
to consider the closely related observables that are the average cavity pop-
ulation  n   a   = 〈 a  †  a 〉, the average QD occupation  n  σ  = 〈σ † σ〉 and the second-
order correlator at zero delay g a a aa a

( )( ) / .na
2a a aa)( ) / n= 〈 〉aaaa   Other quantities such 

as statistics of the photon numbers or purity of the state, Tr(ρ 2 ), are given 
by Laussy and del Valle (2010). Those of interest here are shown in   Fig. 9.3  
for various values of γ  a   as a function of QD pumping only (with  P   a   = 0). We 
choose  n a  ,   Fig. 9.3a , to illustrate the various regimes that the system is going 
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 9.3      Single-time observables: (a) cavity population  n a  , (b) QD population 

 n σ and (c) two-photon counting correlator  g  (2) , for γ a    / g  varying exponen-

tially between 10 and 0.1, as a function of QD pumping. In (a) the exact 

population is plotted in thick lines and spans the whole pumping range. 

Superimposed are analytical approximations in the various regimes 

of operations. On the left is shown the linear model (with two Bose 

fi elds), which is a good approximation of the JC in the linear regime. 

It is extended to values of γ  a  , which tend exponentially to zero. These 

solutions become exact over their entire range of validity when γ  a   → 0, 

with a divergence at  P  σ  = γ σ , the threshold for lasing. In the middle part 

of (a) is shown the lasing-regime approximation, which is quantitatively 

good for the four upper cases only. In the right part of (a) is shown the 

thermal approximation. Observables in (b) and (c) behave as expected 

for these regimes: inversion (respectively, saturation) of the dot with 

uncorrelated (respectively, bunched) statistics for the photon counts in 

the lasing (respectively, thermal) regime.  
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through. The thick lines that span the whole pumping range are the exact 
populations, computed numerically. The thin lines, which take roughly one 
third each of the pumping range, are analytical approximations. When they 
agree with the numerical result, they defi ne the various regimes of opera-
tion. The approximate expressions for these three regimes are given by:  

n
g

g
Pa ≈

( )a + +( )
4

4

2

2
a + γ γ σg ag) +(4 γ γa

σPP linear regime (left),   [9.12]   

n
P

P

P

g
a

a

a

a

≈
+

−
+

−
+ P⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

γ
γ

γ
γ

γ γ+ −P

γ
σ σPP+ σ

σ σPP+
σ σγ + PP

2
1

2

4 2
lasing regime (midddle)dd ,   [9.13]   

n
g

Pa
a

≈ −4 2
1

γ σPP quenched regime (right).  [9.14]  

 These results follow from Laussy  et al . (2009), del Valle  et al . (2009) and 
del Valle and Laussy (2010a) (similar results can be obtained for  n  σ ,  g  (2) (0), 
etc.) We will now address these various regimes in turns.   

 9.3.3     Luminescence spectra in the linear regime 

 At small pumping (around  P  σ / g  < 0.01 for the parameters of our experiment), 
when only the fi rst manifold is signifi cantly occupied, the two-level system  σ  
(a Fermi operator that anticommutes) can be replaced in good approximation 
by a harmonic oscillator operator  b  (a Bose operator that commutes), like  a  
for the cavity photon. This has the considerable advantage that all observ-
ables, including PL spectra, can be solved exactly under incoherent pumping. 
Disposing of closed-form expressions allowed us to provide the fi rst quanti-
tative descriptions of experimental data, as reported by Laussy  et al . (2008). 
Equivalently, in this regime one can solve the Jaynes–Cummings system trun-
cating in the fi rst manifold, as was done by Laucht  et al . (2009a), with the 
added advantage of extending the domain of applicability beyond the linear 
regime. This can be done providing that the coupling is suffi ciently weak such 
as to ensure that the excitation number in the system never exceeds unity. In 
the weak coupling (WC) regime, the validity extends to the whole pumping 
range. An example adapted from Laucht  et al . (2009a) will be discussed below. 
Good agreements between such types of model and the experiment have also 
been obtained by other groups, for instance by Münch  et al . (2009). 

 The two-coupled oscillators, or  linear model , is valuable in its own right, 
not only when     na � 1. For arbitrary populations, it describes for instance 
the ground state of QW exciton-polaritons (see Kavokin  et al .’s (2011) 
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textbook). Imamoglu and Ram (1996), Rubo  et al . (2003), Laussy  et al . 
(2004) and others used it to describe the dynamics of their Bose–Einstein 
condensation. The PL spectrum of such models has been computed by 
Porras and Tejedor (2003) (paying special attention to interactions). More 
related to our present topic, this also describes the case of large QDs in 
microcavities, where the emitter can accommodate more than one excita-
tion, a situation studied by Laussy  et al . (2006). We shall now describe 
the linear model in its most general form, but if the intent is to apply 
it to the small pumping case of the JC system, one should be careful to 
make sure there is no deviation from the full JC system, for example by 
checking numerically the population with formula  [9.12]. (This precau-
tion should also be taken with the truncated JC model.) When all these 
models converge, results are exact so far as fi rst order observables – such 
as populations and PL spectra – are concerned. Second and higher order 
correlations, on the other hand, are not properly described. The counting 
statistics,  g  (2) (0), for instance, is always equal to 2 in the linear model (and 
zero in the truncated JC), whereas it can take intermediate values for the 
JC system, as shown in   Fig. 9.3c , being the closer to zero (antibunching), 
the larger the decay rate (showing that systems far from SC may have 
some value for generating quantum light). 

 By including pumping in the linear model, one changes the conventional 
criterion for SC, which, defi ned by the condition of emergence of dressed 
states, reads:  

γ a bγ γγ g− <γ bγ 4 .g   [9.15]  

 Including pumping, it modifi es to:  

g( )γ a aγγ P ( )γ b bPγ b bγ b < 4 .g   [9.16]  

 That is, the meaningful decay rates – which, in the spontaneous emission 
case of Equation [9.15], are the decay rates for one excitation (γ  a   and γ  b  ) – 
become the decay rates of the modes. Since they are bosonic here, they may 
acquire under continuous excitation a longer effective lifetime: the system 
still loses individual excitations at the rate γ  c   ( c  =  a, b ) but the states that 
undergo the coupling dynamics are not single quanta anymore but a ‘con-
densate’ of excitations that are sustained in the system by the interplay of 
pumping and decay. In the left part of   Fig. 9.3a , we plotted the population 
following from the linear model (with Bose stimulation), which features the 
divergence associated with the formation of the condensate. When  P   c   → γ  c   
(from below) the mode becomes infi nitely lived with an infi nite coher-
ence time and its linewidth vanishes accordingly. Therefore, pumping may 
help SC.   
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 On the other hand, being of an incoherent nature, it also disrupts coher-
ence by randomizing the phase and can also, if it is too large, tend to bring 
the system into the WC regime. Therefore, incoherent pumping represents 
a trade-off between favouring and spoiling coherence. With the coupling 
strength  g  providing the unit, there are four parameters that determine 
the phases of weak and strong coupling in this wider picture that includes 
pumping: γ  c   and  P c  . The four-dimensional phase-space that results is repre-
sented with two 3D cuts in   Fig. 9.4  (cutting in the plane γ  b   = 3 g /59, this being 
the parameter of our experiment presented below) and in   Fig. 9.5  (cutting in 
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ing γ  a  / g)  as shown in (a) and/or providing a photon content to the 

system, as seen in (b)–(c). The points (i)–(iii) mark the position of the 

spectra plotted in   Fig. 9.6  and (iv)–(vii) in   Fig. 9.7 .  
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the plane γ  b   = 3g). The region admitting a steady state is bounded, since the 
loss of particles that increases with the number of excitations is balanced 
by Bose stimulation of pumping, and one should, thus, exclude cases where 
more particles are injected at any given moment than are lost, otherwise the 
system increases without bounds. The boundary can be found by solving the 
equation  n  a  → ∞ for Equation [9.12]. We come back to the physical meaning 
of this behaviour, which is an instability driving the system to lasing, when 
discussing the JC system. 

 The conditions of convergence are given by γ  a   + γ  b   >  P   a   +  P   b   and 4 g  2  > − 
(γ  a  − P   a  )(γ  b  − P   b  ). The fi rst condition determines the boundary on the SC side 
and shows that it is a hyperplane. The second determines it on the WC side 
and shows that it has a curvature, given by the effective Purcell parameter 
4 g  2 /[(γ  a  − P   a  )(γ  b  − P   b  )]. Within the area of convergence, another hyperplane 
separates the SC and WC spaces. The structure is, therefore, simple enough 
albeit in a 4D space. In any 2D cut, the SC space is enclosed in a polygon 
(on the 2D cuts shown in   Figs. 9.4  and   9.5 , the SC is enclosed within a 
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triangle, where in   Fig. 9.5c , the lower-left corner is cut off). SC here cor-
responds to the existence of dressed states at resonance, that is, existence 
of nonzero ω  p  . 

 A less fundamental quantity, but one that attracts a greater experimen-
tal interest, is the observed splitting in the PL spectrum. This has a much 
more intricate behaviour, which, for one thing, extends into both SC and 
WC spaces. The boundary between regions where the cavity PL spectrum 
is single-peaked and double-peaked is shown in the 3D plots as the surface 
enclosed in the region of convergence and in dashed lines in the 2D cuts of 
these. The analytical expression for this can be found in Gonzalez-Tudela  et 
al . (2010b; there is a typo in Equation [9.3] in this text, Γ  b   should be replaced 
everywhere by −Γ  b  ).   Figure 9.4a  is the case of no cavity pumping (the front 
face of the 3D representation). There, the one-peak area fully encloses the 
WC region and overlaps the SC region on its high- γ a   fl ank, showing that, 
because the splitting-to-broadening ratio of the polaritons becomes too small 
when SC becomes weaker, the ability to resolve the Rabi doublet is lost.  

 PL spectra for the points marked i, ii, iii are shown in   Fig. 9.6 , where one 
sees this fact spelled out by the decomposition from Equation [9.10] into 
dressed states and dispersive parts. If we progress along the  P a   axis in   Fig. 
9.4 , we see that this boundary is quickly shifted away from most of the SC 
region. For the reasons explained in the SE emission case, providing a pho-
ton character to the effective quantum state (by the interplay of pumps and 
decays) makes the doublet in PL more apparent, with a larger splitting and 
better contrast. Interestingly, by crossing into the WC region, this brings us 
into another region that goes against naive expectations since, although in 
WC, the system now presents two peaks at resonance. This latter case also 
has a clear physical origin. It arises when looking at the emission of a broad 
mode (say the cavity) coupling weakly to a narrower one (the QD) with 
the system starting in the state of the broad mode. The latter undergoes its 
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 Luminescence spectra of quantum dots in microcavities 309

© Woodhead Publishing Limited, 2012

decay in the vacuum except for the frequency where it is coupled, albeit 
weakly, to the other mode, which serves as the favoured recipient for the 
de- excitation. As such, the effect evokes a Fano resonance, although the 
lineshape does not fi t and, interestingly, has the lineshape of an electromag-
netically induced transparency (EIT) interference (namely one Lorentzian 
carving a hole into another one). EIT is known to have a deep connection 
with the Autler–Townes splitting, which arises from a dressed state splitting 
and, thus, corresponds in our case to the Rabi splitting. We fi nd here, at a 
more fundamental level, that such distinct phenomena share the same inti-
mate connections in the simplest possible model of two-coupled harmonic 
modes. The fi nal PL shapes change smoothly when crossing from the WC to 
the SC transition, although the underlying dynamics undergoes a dramatic 
change (going from real to complex valued correlators).  

 We have shown in   Fig. 9.4  the case γ  b   ≈ 0, which corresponds to our experi-
mental system. Here we see that observing a splitting in PL demands, in the 
absence of cavity feeding, a better fi gure of merit than that required for 
SC. Progressing in the 4D phase space, now in the direction of increasing 
γ  b  , we will see that in the absence of cavity feeding, the area where a single 
peak at resonance is observed in PL extends dramatically in the SC region. 
In the case shown in   Fig. 9.5  of γ  b   = 3g, at vanishing pumping, splitting is 
never observed! One must either increase the QD pumping to enhance SC 
by increasing the effective lifetime of the mode, or bring in a nonzero pho-
ton pumping to change the photon state of the system. Although we have 
shown the case of wider generality where  n a   and  n b   can take any value, this 
discussion remains relevant for the limiting case of vanishing excitation of 
the JC system. Panels (b) in   Figs 9.4  and   9.5  show in the  P b  ,  P a   subspace how 
one or two peaks are resolved by tilting the angle determined by the ratio 
of  P   b  / P   a  . Even for non-vanishing values, this angle is more crucial than the 
magnitudes of pumping themselves and the renormalization that they lead 
to. These four possibilities are explored by going around the intersection 
shown in   Fig. 9.4c  (zoomed in inset) with spectra iv–vii shown, together with 
their decomposition into dressed states and interferences, in   Fig. 9.7 . All 
these results combined show that a splitting in PL is neither a suffi cient nor 
necessary condition of SC.    

 9.4     Experimental implementations and observations  

 The experimental implementation is naturally much more complex than the 
ideal two-level system coupled to a cavity that has just been presented. The 
QD, which we have used as a synonym for ‘two-level system’ in the theo-
retical model, exhibits other features in a real system and more particularly 
so in the semiconductor case. Regardless of the experimental system, the 
strong-coupling physics calls for high quality, low mode-volume cavities. 
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Two-dimensional photonic crystal defect microcavities containing low-
density semiconductor QDs have proven to be a successful approach for 
realizing such structures in the solid state. An artistic view of such a device 
is presented in   Fig. 9.8a . The basic structure of the underlying QD samples 
studied is shown in the inset and is based on GaAs  p–i–n  photodiode struc-
tures grown by molecular beam epitaxy. The nominal layer sequence is as 
follows: fi rstly, we deposit a 500 nm thick,  n -type ( n  = 2 × 10 18  cm −3 , Si-dopant) 
Al 0.8 Ga 0.2 As sacrifi cial layer followed by a 35 nm thick,  n -type GaAs lower 
contact layer ( n  = 2 × 10 18  cm −3 , Si-dopant). This is followed by a 110 nm 
thick intrinsic GaAs waveguide core into the centre of which we grew a sin-
gle layer of QDs by depositing 7.36 ML of In 0.4 Ga 0.6 As at 595°C and a rate 
of 0.04 MLs −1 . A 35 nm thick  p -type ( p  = 2 × 10 19  cm −3 , C-dopant) GaAs top 
contact was then grown to complete the structure. A single layer of InGaAs 
self-assembled QDs with an areal density < 20 µm −2  are incorporated in 
the centre of the intrinsic region of the device. Subsequently we established 
a 5 × 5 square array of photonic crystals with defect nanocavities, which 
were placed using a combination of electron beam lithography and Cl 2 -Ar 
reactive ion etching as shown in   Fig. 9.8b . The photonic crystal consists of 
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 9.7      Same as   Fig. 9.6  for the points marked (iv)–(vii) in   Fig. 9.4 , showing 

all confi gurations where (iv) a doublet is seen in SC (as expected), (v) 

a singlet is seen in SC (unexpectedly), (vi) a singlet is seen in WC (as 

expected) and (vii) a doublet is seen in WC (unexpectedly). Here again 

the criterion to defi ne SC is the splitting of dressed states. The observed 

cavity spectrum changes smoothly over these four regions and is thus 

not a reliable indicator of SC in not-very strong coupling. As (vii) is 

dwarfed by the decomposition, the PL spectrum has been magnifi ed by 

a factor of 3.  
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a lattice of cylindrical air holes (radius  r ) arranged in a hexagonal lattice 
with period  a  = 260 nm and  r / a  = 0.3. Nanocavities were formed by omitting 
three missing holes at the centre of the photonic crystal. The L3 nanocavi-
ties support six strongly localized modes within the two-dimensional pho-
tonic bandgap with quality-factors ranging from  Q  = 3000 to 15 000. This 
allows us to perform measurements both in the weak and strong-coupling 
regime of the light-matter interaction. 

 To increase the quality factor of the established cavities, we detuned the 
outer holes of the cavity by 0.15 a . After the reactive ion etching step that 
transfers the holes forming the photonic crystal into the GaAs waveguide 
structure, we established an Ohmic back contact to the buried  n + layers 
and defi ned 300 µm × 400 µm photodiode mesas using photolithography 
and wet etching techniques. Within the 200 µm × 200 µm windows that were 
opened in the metallic top contact for optical access we established an array 
of 5 × 5 photonic crystals. Finally, suspended photonic crystal membrane 
structures were fabricated by selectively removing the Al 0.8 Ga 0.2 As layer 
beneath the GaAs waveguide core to leave a free-standing,  p–i–n -doped 
GaAs membrane. 

 The established contacts enable us to realize an axial electric fi eld that 
can be tuned by varying the voltage applied across the  p–i–n  junction ( V  app ). 
  Figure 9.8c  shows a typical current–voltage trace recorded without illumi-
nation at  T  = 15 K. Clear rectifying behaviour is observed with a forward 
bias current onset of  V bi   ∼ 1.1 V, corresponding to the built-in potential in 
the membrane  p–i–n  diode, and negligible current fl ow (< 0.01 µAcm −2 ) in 
reverse bias. From the built-in potential and the device geometry, we esti-
mate the static electric fi eld to be  F  = ( V   bi  − V  app )/d, where  d  = 110 nm is the 
thickness of the intrinsic region and  V  app  is the applied electrostatic poten-
tial. Thus, we expect that static electric fi elds in the range 0 kVcm −1  < | F | < 
100 kVcm −1  can be applied parallel to the QD-growth axis, as depicted in 
  Fig. 9.8a  inset. 

 The sample was mounted in a liquid He-fl ow cryostat and cooled down 
to  T  = 15 K. For excitation, we used a pulsed Ti:sapphire laser (  f  laser  = 80 
MHz, 2 ps duration pulses) tuned into resonance with a higher energy cavity 
mode (1.305 eV <  E  laser  < 1.355 eV) in order to excite QDs located inside the 
cavity only. The QD micro-PL was collected via a 100× microscope objec-
tive (numerical aperture = 0.5) providing a spatial resolution of < 1 µm and 
the signal was spectrally analysed by a 0.55 m imaging monochromator and 
detected with a Si- or an InGaAs-based, liquid nitrogen cooled charge cou-
pled device detector. For time-resolved measurements, we used a fast silicon 
avalanche photodiode that provided a temporal resolution < 100 ps after 
deconvolution.  

 A typical PL spectrum of a single QD-cavity system in the weak coupling 
regime is presented in   Fig. 9.9a . The strong emission line highlighted with 
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the shaded area on the left-hand side stems from the cavity mode emission 
and is, in this particular case, strongly detuned (Δ E  = 15 meV) from the 
discrete QD emission lines. The latter can be distinguished into  s -shell and 
 p -shell transitions according to the corresponding occupation of the QD. 
Here, the strong and well-separated emission line labelled  X  (highlighted 
with the shaded area on the right-hand side of the fi gure) was shown to stem 
from the single exciton transition by conducting excitation power depen-
dent PL spectroscopy (I ∝ Pm with  m  = 0.95, data not shown). 

 Although no discrete QD transitions are present in the spectral vicinity 
of the cavity mode, pronounced PL emission is still observed from the cav-
ity mode. For this system we conducted photon cross-correlation measure-
ments between the cavity mode and the QD single exciton transition, which 
were detuned one from the other by Δ E  > 18 meV. The excitation power 
for the experiment was chosen just below saturation of the single exciton 
line. In   Fig. 9.9b  we plot the cross-correlation histogram as a function of 
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acteristic of the device recorded without illumination. (Source: Adapted 

from Laucht  et al . (2009b).)  
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the time between two detection events. Here, τ > 0 corresponds to detec-
tion of a photon from the exciton after detection of a photon from the 
cavity mode. At zero time delay (τ = 0 ns) we observe a clear dip in the 
histogram. A fi t to the data yields g Xcavity−

( ) ( ) 0) = 11.  after deconvolution, 
showing the very high degree of anti-correlated emission from the cavity 
mode and the investigated single exciton line, and evidences that this cavity 
mode is predominantly fed by only this one QD. Similar experiments have 
been published by Hennessy  et al . (2007), Kaniber  et al . (2008), Winger  et 
al . (2009) and are also presented by Tarel  et al . in the next chapter where 
similar results to our   Fig. 9.9  are presented. 

 Although phonon-mediated feeding of the cavity mode has already been 
demonstrated by, for example, Hohenester  et al . (2009) to be effective for 
small dot-mode detunings Δ E  < 5 meV, the cross-correlation measurement 
clearly suggests the existence of an additional mechanism that non-resonantly 
feeds photons into the cavity mode for much larger detunings. In the past 
few years this scenario has been corroborated and validated by Hennessy 
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 9.9      (a) PL spectrum of a QD-cavity system with the cavity mode 

detuned to Δ E  = 18 meV lower energy than the single exciton transition. 

(b) Cross-correlation histogram between the cavity mode and the single 

exciton. Here, τ > 0 corresponds to detection of a photon from the 

single exciton upon detection of a photon from the cavity mode. The 

solid line is a fi t to the data. (Source: Adapted from Laucht  et al . (2011).)  
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 et al . (2007), Press  et al . (2007), Kaniber  et al . (2008) and Winger  et al . (2009). 
Strong support for the multi-exciton feeding of the cavity mode is obtained 
by conducting time-resolved PL measurements when the QD-cavity system 
is excited above saturation of the  s -shell levels ( P  = 250 nW for our excita-
tion conditions).  

 We plot the time-resolved emission intensity of a QD-cavity system in 
  Fig. 9.10a , as a function of the wavelength. Emission from the  p -shell transi-
tions of QD1 (λ p−shell1  = 930−935 nm) and QD2 (λ p−shell2  = 943−948 nm) occurs 
rapidly after the arrival of the laser excitation pulse and decays within a 
few nanoseconds. Emission from the  s -shell transitions of QD1 (λ s−shell1  = 
940−945 nm) and QD2 (λ s−shell2  = 962−967 nm) is temporally delayed, such 
that the maximum intensity is not reached until ∼4–6 ns after excitation. 

930 935 940 945 950
Wavelength (nm) Time (ns)

955 960

8-9 ns

6-7 ns

4-5 ns

2-3 ns

0-1 ns

965 0 1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

0.0

0.5

9
8
7
6
5
4
3
2
1
0

1.0

p-shell 1
bkgrd

mode

mode
bkgrd
p-shell 1

IRF

X1

X1

X2

X2

(a) (c)

(d)(b)

T
im

e 
(n

s)
P

L 
in

te
ns

ity
 (

ar
b,

 u
ni

ts
)

P
L iIntensity (norm

.)
P

L intensity (norm
.)

 9.10      (a) Contour plot of the time-resolved PL intensity of a QD-cavity 

system as a function of emission wavelength. (The spectrally broad 

mode emission at early times is an artefact of plotting and not a physi-

cal effect.) Here, the linear grey scale was chosen such that features of 

low intensity are very visible and the intensity above a certain thresh-

old is plotted with the same shade of grey. (b) PL spectra at different 

time delays after the laser pulse, each integrated over 1 ns. (c) and (d) 

Extracted, normalized PL intensity for (c)  X  1  (circles) and  X  2  (rectangles) 

and (d) cavity mode (stars),  p -shell 1 (triangles), and  p -shell 1 back-

ground (diamonds) as a function of time delay after the laser pulse. The 

IRF is plotted as solid line. (Source: Adapted from Laucht  et al . (2010).)  
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At that time the population in the dot has already decayed to the single 
exciton level. Emission prior to the arrival of the laser pulse at 0 ns origi-
nates from excitation due to the previous excitation cycle, 12.5 ns earlier. 
The emission from the cavity mode at λ cav  = 954 nm occurs rapidly after 
arrival of the excitation pulse and decays quickly within ∼2 ns. The spectra 
plotted in   Fig. 9.10b  show again the time evolution of the whole QD-cavity 
system. Here, we integrated the measured PL signal over Δ t  = 1 ns time 
intervals and present the resulting spectra for the time intervals from 0–1, 
2–3, 4–5, 6–7 and 8–9 ns, from bottom to top in   Fig. 9.10b . For the fi rst time 
interval, emission from the  p -shell states of QD1 and QD2 and from the 
cavity mode dominates the spectrum. However, the intensity of this emis-
sion decreases rapidly and vanishes almost completely by 5 ns after the exci-
tation. The dominating peaks of the spectrum are now the  s -shell emission 
of QD1 and QD2, whilst hardly any signal from the according  p -shells or the 
cavity mode is observed. 

 For a more quantitative comparison, we plot the integrated, normalized 
PL intensity of X1 (circles) and X2 (rectangles) in   Fig. 9.10c , and of mode 
(stars),  p -shell1 (triangles) and  p -shell background emission (diamonds) in 
  Fig. 9.10d . The solid line is the instrument response function (IRF) of our 
experimental setup, measured with the spectral detection window tuned 
to the laser wavelength. It serves as reference for the time when the laser 
pulse excites the sample and allows us to determine the zero point of the 
time axis. While emission from the cavity mode,  p -shell states and  p -shell 
background occurs immediately after the laser pulse, the emission from the 
single excitons X1 and X2 is delayed and is temporally completely uncor-
related with the mode emission. It is also interesting to take a closer look 
at the decay times. The cavity mode decays (τ mode  = 1.4±0.1 ns) even faster 
than the selected discrete  p -shell state (τ p-shell1  = 2.2±0.1 ns), but slower 
than the  p -shell background between the discrete emission lines (τ bkgrd  = 
0.8±0.1 ns). Thus, feeding of the cavity mode apparently occurs from many 
different multi-exciton states as well as from the broad background arising 
from many particle exchange correlations, present at higher excitation lev-
els (Dekel  et al ., 1998). 

 We will continue to present our observation of SC, but to place it in its 
proper context, we fi rst complete the theoretical description to consider the 
possible effect of higher rungs of the JC ladder and a component that will 
turn out to be crucial in our case, namely, pure dephasing.   

 9.5     Luminescence spectra in the nonlinear regime 

 Let us return to   Fig. 9.3  where we left the discussion at the vanishing pump-
ing case of the Jaynes–Cummings system, leading to the linear model. 
Increasing pumping, we leave the linear regime to enter lasing, a regime 
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and concept (of a ‘microlaser’ or ‘one-atom laser’) fi rst introduced by Mu 
and Savage (1992) and later developed by Löffl er  et al . (1997), Benson and 
Yamamoto (1999), Karlovich and Kilin (2001) and Gartner (2011), among 
others. In this regime, the system grows a coherent optical fi eld by injection 
of photons in the cavity from the QD. This is achieved with an inverted 
QD and results in a plateau at unity for  g  (2) (0), showing that the fi eld has 
Poissonian fl uctuations. In this case, studied by del Valle and Laussy (2010b, 
2011), the system can be described semi-classically rather than at the full 
quantum level, which is not tractable for such large numbers of photons 
(culminating at about 50 for the parameters of   Fig. 9.3 ). The approximation 
in Equation [9.13] becomes better with increasing number of photons. In 
  Fig. 9.3a , we extended the approximation beyond its regime of validity to 
show where the system is properly described as a laser. Increasing pumping 
even more, the coherence brought by lasing is disrupted by the decoherence 
from the pumping and the system enters a third regime of self-quenching, 
with a collapse of cavity population, saturation of the QD to its excited state 
(being prevented by too large pumping to enter the SC Rabi oscillation) and 
thermal, or more appropriately, chaotic statistics in particle number fl uctua-
tions. This regime is well described by approximation of thermal fi elds. 

 Quenching has not been experimentally observed yet, possibly because 
the single two-level system picture applies less or even breaks down in this 
very high excitation regime. Theoretically, a more refi ned cothermal repre-
sentation for the fi eld (a convolution of thermal and coherent fi elds in the 
Glauber  P  representation) covers very well all regimes over the entire range 
of excitation. The approximations have, on the other hand, the advantage of 
separating the three regimes on clear physical grounds. However, perhaps 
the more interesting region is not covered in any of these classifi cations. This 
is the one that occurs between the linear (but quantum) and lasing (classi-
cal) regimes. For this reason we shall call it the ‘ nonlinear quantum regime ’. 
This is the case when a few manifolds – more than the fi rst but not as many 
as to loose discretization due to quantization – are excited. Populating the 
second rung is the fi rst such genuinely quantum case. Despite remarkable 
advances in recent years in reaching SC, there still lacks a direct observa-
tion in the PL of this fundamental deviation from the classical realm. With 
coherent excitation, on the other hand, strong indirect evidence has been 
reported, notably by Faraon  et al . (2008) demonstrating photon blockade 
and by Kasprzak  et al . (2010) using four-wave mixing.  

 A selection of representative spectral shapes in this regime is shown in 
  Fig. 9.11 , for three different cavity decay rates: γ a / g  = 0.1 as representa-
tive of exceedingly good systems, available in the near future for semi-
conductors and already reached in circuit QED; γ a / g  = 0.5 representative 
of state-of-the-art system, such as those reported by Ohta  et al . (2011); 
and γ a / g  = 1.15, the case of our own experiment. In all cases, we assumed 
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γ σ / g  = 0.00334, a parameter also taken from our experiment. Beyond 
the linear regime, there is no longer the symmetry in cavity and exciton 
emission, and spectra differ considerably depending on the channel of 
detection. There are also variations owing to the effective quantum state 
realized in the system but for brevity we shall consider excitonic pumping 
only, which provides a reasonably comprehensive picture. Cavity PL spec-
tra are shown on the upper row (a, c, e) and QD spectra on the lower row 
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 9.11      Typical spectral shapes for cavity (upper row) and QD (lower row) 

emission, for three cavity quality factors: better than is currently availa-

ble in the fi rst column (γ a /g ≈ 0.1), state-of-the-art in the second column 

(γ a /g ≈ 0.5), and for our experiment in third column (γ a /g ≈ 1.15). In all 

cases, (γ σ /g ≈ 0.00334). In the best system, the nonlinear JC transitions 

of   Fig. 9.1b  are well reproduced, particularly in the dot emission, which 

is, however, more diffi cult to detect. In the intermediate system, the 

large broadening of the higher rungs limits the observation to a mere 

doublet at resonance that collapses to a single line (that may narrow 

upon further increasing of pumping). Close to resonance, the nonlinear 

transitions are revealed and manifest as a triplet. For our system, an 

apparent crossing is observed when increasing pumping, with notable 

features such as persistence of coupling at large detuning too weak to 

be discriminated in an actual experiment.  
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(b, d, f) of   Fig. 9.11  as density plots with cuts highlighted for a few detun-
ings of interest (including resonance in all cases). The simplest expec-
tation is that these fi gures should reconstruct   Fig. 9.1 b, which is partly 
the case at least for the best system. We see here that the QD emission 
features both the inner and the outer peaks, whereas the cavity emission 
suppresses the outer ones, for the reasons explained when discussing tran-
sitions in the JC ladder, Equations [9.5]–[9.7]. It would therefore appear 
interesting to detect QD emission; however, this is technically more dif-
fi cult: cavity emission is directional with intensity ∝ n a γ a , a product of two 
large numbers, whereas QD emission is in a large solid angle with inten-
sity ∝ n σ γ σ , a product of two small numbers. On the cuts shown, one sees 
also that the QD emission has a richer spectral structure as compared to 
the cavity spectrum that, in a good system, is composed of Lorentzian 
lines at the JC transitions (but between same-branch type of polaritons 
only). At resonance, a ‘fork’ neatly shows the four transitions involving 
the fi rst two rungs of the ladder. With lower quality systems, although the 
VRS is neatly resolved, increasing pumping to populate the higher mani-
folds quickly leads to large broadenings that smother the Rabi doublet. 
A typical case, where the coupling strength is about twice the decay rate, 
is shown in   Fig. 9.11c  and   9.11d . At resonance, only a doublet is observed, 
in contrast to the fork of the better system. The splitting of this doublet 
goes from the VRS to a single line, as further rungs pile up in between. 
In the case shown, the doublet is mainly due to transitions from higher 
rungs. Increasing pumping furthermore at this point may lead to lasing, 
with the single line narrowing, and  g  (2) (0) locking to unity. This transition, 
not shown here, has been reported by Nomura  et al . (2010) and is one of 
the rare instances where the QD-microcavity system has been induced to 
climb the JC ladder under incoherent excitation. 

 But rather than following the lasing any further we note that there is 
still a clear deviation from the mere crossing scenario as is quite apparent 
from the density plot. One can track the apparition of spectral triplets close 
to – but not at – resonance. Straying from resonance pins the inner transi-
tions away from one of the bare modes that is detuned away. At resonance, 
although SC is optimum, it conceals its features by a symmetry that detun-
ing allows to break. In the counterpart for QD emission, a clear deviation of 
the PL shape from two Lorentzians is observed in the form of two elbows 
on the fl ank of two peculiarly shaped polariton lines. The elbows are due to 
the outer JC transitions while the shape of the polariton lines is due to an 
absorption line carved in an emerging structure. One sees the latter effect 
more clearly once again by detuning the system, with a hole carved at the 
cavity frequency. This hole is due to the onset of lasing, with the cavity suck-
ing excitation from the QD. We will return to this point when discussing the 
lasing regime. 
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 Turning to the last case, that of our own experimental system, with suf-
fi ciently small γ a  such as to display an unambiguous VRS, we observe that 
upon increasing pumping to populate the JC ladder, the Rabi splitting is 
quickly lost because of the very fast broadening at resonance. However, the 
system remains strongly coupled throughout. One piece of evidence for this 
is the shift of the cavity emission on both sides of the crossing, which tracks 
the polariton energy Equation [9.4] rather than the bare cavity. The lack of 
features at the expected anticrossing is shown by the various cuts around 
the resonance, each of them in isolation displaying no phenomenology that 
one could distinguish from WC. In an actual experiment, it is therefore dif-
fi cult to reach any conclusion since both modes are anyway shifted with the 
control parameter that detunes one from the other. In the QD emission, the 
hole carving of lasing onset reduces to a kink and the Rabi doublet displays 
a splitting with fat tails. 

 In summary, there is a rich phenomenology associated with experimental 
observables when studying the strong-coupling regime with cavities con-
taining QDs. However, much of it is technically diffi cult to access and, unless 
the system is of an exceedingly good quality, what remains is not suffi ciently 
explicit to provide compelling evidence that one climbs the JC ladder. Other 
more mundane mechanisms can lead to similar phenomenology. We give 
one such example in the next section.   

 9.6     Effects of pure dephasing 

 ‘ Pure dephasing ’ is a dephasing of the off-diagonal elements of the den-
sity matrix, a mechanism washing out the phase relationship between states 
without changing their population (the adjective ‘pure’ is required in some 
fi elds where the decay of population is also called dephasing; not fear-
ing confusion, we will drop it in the following). As might be expected, it is 
extremely important in semiconductors, since the quantum states are typi-
cally in contact with reservoirs, couple to various degrees of freedom, etc. 
A major source of decoherence in QDs is due to coupling to the crystal lat-
tice. At high temperatures, Borri  et al . (2005) identifi ed an exciton dephasing 
via interactions with phonons, while at high excitation powers, Favero  et al . 
(2007) linked it to the fl uctuating charge environment of the QD. In the 
master equation, this type of dephasing can be included with an additional 
Lindblad term  L  ϕρ  = γ ϕ (σ z ρσ z  − ρ)/4 in Equation [9.2], with σ z = [σ + , σ]. This 
term has been considered by Laucht  et al . (2009a) and Auffèves  et al . (2009) 
in the linear regime and by Gonzalez-Tudela  et al . (2010a) and Auffèves 
 et al . (2010) in the nonlinear regime. Other theoretical approaches have 
been pursued beyond this phenomenological model, for instance Kaer  et al . 
(2010) considered non-Markovian effects. Dephasing has a nontrivial and 
sometimes unexpected effect on the dynamics of light-matter coupling of 
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detuned systems, such has been discussed by Auffèves  et al . (2009). However, 
we will focus on the case of resonance in the following.  

 In the linear regime, dephasing leads to a broadening of the polariton 
lines, and a collapse of the Rabi splitting. This added degree of freedom 
allows a remarkable fi t of the experimental data in the sense that a global 
fi t of all PL lines can be obtained with essentially constant system param-
eters (coupling strength and lifetime) and also fi xed pumping strength-con-
ditions that closely correspond to the experimental situation. This is shown 
in   Fig. 9.12a , where we investigated the cavity PL spectrum as a function of 
temperature. Examples of the recorded spectra from Laucht  et al . (2009a) 
are plotted on the fi gure for temperatures ranging from  T  = 17.5 to 48.1 K. 
The excitation power density used for these measurements was 10 W/cm 2 , 
far below saturation of the exciton transition. Clearly, we resolve the two 
polariton peaks for  T  < 30 K, but they broaden rapidly between  T  = 30 and 
40 K and merge into a single poorly resolved feature at higher temperatures. 
The entire detuning-dependent data at each fi xed temperature was fi tted by 
Laucht  et al . (2009a) with parameters that are summarized in   Fig. 9.12b . The 
temperature is not expected to infl uence either the decay or pumping rates 
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of QD and cavity mode. This expectation is confi rmed by the fi tting, where 
γ a,σ  were kept globally constant and  P  a,σ  were  found  to remain constant as  T  
varied. The only fi tting parameter that varies appreciably with the tempera-
ture is the pure dephasing rate γ ϕ  (fi lled triangles in   Fig. 9.12b ) that increases 
linearly for  T  < 30 K with a temperature coeffi cient  α  0  ~ 1.1 µeV/K, and more 
rapidly for higher temperatures. The linear temperature dependence of the 
dephasing rate is strong evidence for decoherence mediated by coupling to 
acoustic phonons, along the scheme of Favero  et al . (2003), Besombes  et al . 
(2001) and Favero  et al . (2007), who report temperature coeffi cients of the 
zero-phonon exciton transition in the range   α   0  = 0.04–4 µeV/K (see also the 
discussions by Borri  et al . (2005) and Urbaszek  et al . (2004) who concur with 
these conclusions). 

 In our experiment, therefore, the system does not climb the JC ladder, 
since it is foiled by dephasing. Instead, it remains in the fi rst manifold. We 
also observed no line narrowing when losing the PL splitting with increasing 
excitation, supporting again this scenario. At the same time, we retain strong 
coupling throughout, as shown in   Fig. 9.12c  where we plot the Rabi splitting 
between the dressed states (fi lled squares), a quantity made available by the 
theory. The VRS is insensitive to the temperature for  T  < 40 K and reduces 
slightly at higher temperature. As discussed earlier, the VRS differs strongly 
from the observed splitting (fi lled triangles), which quickly collapses, a fact 
from which one should not infer that the system crossed to WC (although 
this could be the case as well, as reported by Münch  et al . (2009)). In fact, a 
simpler analysis of the peak splitting made by fi tting with two Lorentzians 
only (open circles), indeed confi rms that in all cases, the observed singlet has 
an underlying structure other than that of WC. The quantitative disagree-
ment with our theory is not too severe in this case but this procedure has 
no guarantee to provide accurate, or even meaningful, results in other cases. 
We also note that the cavity feeding mechanism, which we have studied and 
characterized in detail, helps in resolving the splitting. If we set  P a   = 0 in 
the theory, we lose signifi cantly in contrast (but not too much in splitting). 
Unfortunately, it is not so easy experimentally to control the effective quan-
tum state of the system. These observations therefore underscore the need 
for a full theoretical description of the emission spectrum and its variation 
with detuning in order to specify if the system operates in the strong or 
WC regime, and to infer from the data accurate estimates of the system 
parameters.  

 In the quantum nonlinear regime, dephasing has a more striking mani-
festation: it collapses the inner peaks of the cavity PL (in a system good 
enough to observe them) into a single line, affecting the Rabi doublet or 
the outer peaks much more weakly, even though the latter are strongly sup-
pressed anyway in the cavity spectrum, as discussed above. Inner transi-
tions become degenerate, the system not being able anymore to distinguish 
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between the various branches. All the closely spaced transitions are then 
emitted at a common frequency, that of the cavity. As a result, a triplet is 
observed that keeps the VRS essentially untouched with a broader cen-
tral line overlapping it. Qualitatively, the triplet due to dephasing of the JC 
nonlinearities is quite similar to the triplet that arises due to fi nite detun-
ing as discussed above. In both cases quantum nonlinearities from higher 
rungs are involved, and as such a complex and interesting phenomenon is 
hiding behind a ubiquitous and moot spectral shape. Spectral triplets have 
been reported in the literature, fi rst by Hennessy  et al . (2007) and then by 
Ota  et al . (2009a), but they have been explained as stemming from the fi rst 
manifold, namely, as an incoherent superposition (i.e. at different times) 
of a conventional Rabi doublet on the one hand and the empty cavity on 
the other hand, the co-existence of these two regimes being probably due 
to, among other possible scenarios, fl uctuating charges that bring the QD 
in and out of resonance. This is in stark contrast with the triplets we have 
presented above, even the one caused by dephasing, which require more 
than one excitation to access the higher rungs. In the QD direct emission, 
dephasing merely broadens the exciton linewidth while keeping the Rabi 
doublet (and other peaks if visible) with no change in the parity of the sys-
tem, and as such behaves in a way more similar to the linear regime. Such 
an evolution is shown in   Fig. 9.13  for both the cavity emission (right side) 
and QD direct emission (left side). It has been shown by Laussy  et al . (2010) 
that spectral triplets due to dephasing and/or detuning are consistent with 
the experiment. However, it still remains to be proven which mechanism is 
actually accountable for the observed triplet emission. Beside checking QD 
emission, which we have already said is technically challenging, one could 
check for instance whether the central peak undergoes lasing, a feature it 
preserves when arising under SC. Unambiguous identifi cation of the nature 
of the spectral triplets will become increasingly important if quantum non-
linearities, such as the Jaynes–Cummings fork, will remain absent from the 
collection of spectral shapes.   

 9.7     Lasing 

 Finally we turn to the case of lasing, of great interest for applications. 
A recent review is given by Strauf and Jahnke (2011) and the topic is also 
covered by Gies  et al . in Chapter 3. The master equation is not the ideal 
toolbox to tackle this regime in the Jaynes–Cummings model where the 
system can accommodate a very large number of photons. This implies in 
turn an extremely large Hilbert space. When additional saturation effects 
of the QD from a more realistic semiconductor description are taken into 
account, lasing is tamed and the number of photon does not grow so effi -
ciently. This allows, for state-of-the-art parameters, numerical solutions of 
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von Neumann equations as shown by C. Gies  et al . in this volume. In our 
pure Jaynes–Cummings case, one observes an interesting phenomenon of 
breakdown of the quantum regime, where a not too large number of quan-
tum correlators of the type 〈 〉† †m n μ ν  all assuming sizable values, evolve 
into a regime with a very large number of them assuming vanishingly small 
values, showing how the quantized fi eld smooths out and becomes classical. 
This is an awkward situation when numerically addressing the problem as 
we do in the basis of dressed states, since the small values involved require 
one to go beyond machine precision arithmetic to keep track of this loss of 
granularity of the fi eld.  

 This transition is shown in   Fig. 9.14  where the cuts are shown in log scale to 
follow the transition from the quantum to the classical regime. At vanishing 
pumping (  Fig. 9.14a ), the PL spectrum is the VRS and consists of essentially 
two Lorentzians (the coupling strength being high enough in the case we 
have chosen). Increasing pumping but still keeping a small number of par-
ticles in the system, we populate the higher manifolds, leading to apparition 
of the JC nonlinear peaks (  Fig. 9.14b ). These are, again, better seen in the 
QD emission although all are neatly visible on the log scale. For exceed-
ingly good systems, the fi eld quantization can be tracked up to very high in 
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to a triplet is observed in the cavity emission. Keeping the value of γ ϕ  

=  g  and increasing pumping, one would see a transition from the VRS 

to a spectral triplet, much like the observation of Ota  et al . (2009b). In 

the cavity emission, dephasing collapses together the thinly spaced 

transitions of the higher JC rungs. Parameters are γ a /g ≈ 0.1 and γ σ  /g  the 

value of our experiment.  
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the ladder, as shown by Laussy and del Valle (2009) for the case γ a /g = 0.01 
(where one can climb several dozens of rungs). Increasing pumping further, 
the peaks overlap and start to melt (  Fig. 9.14c ). The cavity, which favours 
the transitions close to its energy, quickly goes into lasing and gives rise to 
an intense central peak with a narrowing linewidth, as shown and described 
analytically by Poddubny  et al . (2010). The QD, which equally favours inner 
and outer transitions, shows a stronger emission at the origin simply because 
two of the four transitions contribute there. The other two transitions form 
elbows on both sides, in the ratio 1:2. Still increasing pumping, one enters the 
lasing regime (  Fig. 9.14d ). The complicated PL spectrum featuring a plethora 
of peaks at anharmonic transitions of the JC ladder gives way to a structure 
of much reduced complexity: a triplet. This triplet is also different from the 
three variations we have encountered before. It is, in fact, straightforwardly 
recognizable as a variation of the celebrated Mollow (1969) triplet, which 
arises in the resonance fl uorescence of an atomic system, that is, the PL of a 
two-level system on which impinges an intense laser fi eld. 

 Here, there is no external laser driving the system, but the cavity fi eld grows 
its own coherence under the action of SC and the QD effectively fi nds itself 
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 9.14      Cavity and QD PL spectra with increasing pumping of the QD. 

At vanishing pumping (a) the VRS is observed. Peaks from transitions 

higher in the JC ladder appear under small pumping (b) and start to 

melt when more numerous and overlapping as a result of climbing 

further the ladder (c). This leads to a new and simpler structure, a triplet 

(d) that features a sharp absorption line in the QD spectrum, due to a 

coherent scattering of excitation from the dot to the cavity fi eld, which 

sucks excitation to build lasing. When coherence of the optical fi eld is 

strong enough, the absorption peak disappears (e) and is followed by a 

scattering peak, the counterpart of Rayleigh scattering peak of the con-

ventional Mollow triplet, caused by cavity photon of the now-coherent 

macroscopic fi eld scattering on the QD. At this stage, the cavity is fully 

lasing and is a very narrow Lorentzian line.  
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bathed in a macroscopic, coherent fi eld, exhibiting a phenomenology close to 
that of the conventional Mollow triplet. Differences are discussed in details by 
del Valle and Laussy (2010b); we will limit ourselves here to the most striking 
results: along with the excellent analytical approximations that exist in this 
regime for quantities such as  n a  , as shown in   Fig. 9.3 , one can also derive an 
excellent approximation for the Mollow triplet lineshape formed under inco-
herent pumping, which becomes better and essentially exact as the number 
of photons is increased. This shows again that a classical or semi-classical pic-
ture emerges that adequately describes the system, getting rid of the irrelevant 
underlying quantum details such as the structure of the JC very high in the lad-
der. The formula is qualitatively very good for panels (d) and (e) of   Fig. 9.14  
and it is indistinguishable by eye from the computed result for panel (f), which 
features the triplet and a very narrow peak (the triplet is more apparent in 
linear scale). The small quantitative discord for panels (e) and (f) is due to 
the fact that the cavity has not yet fully formed coherence, which can be seen 
in two ways. The fi rst one is that the cavity itself is not exactly Lorentzian, as 
in the fully formed case in panel (f). The second is more interesting: as the 
Mollow triplet forms, the space separating the two Rabi peaks at low pumping 
evolves into an absorption line, as seen in panel (d). This line becomes fi lled 
until a point where it disappears (e) and then appears again, this time positively, 
forming a narrow peak sitting on the triplet (f). The latter is the counterpart in 
our system of the Rayleigh peak of the conventional Mollow triplet, which is 
due to the atom elastically scattering photons from the laser. In our case, the 
photons are also, in the full sense of the term, elastically scattered by the QD, 
originating from the now coherent cavity fi eld, strong enough to behave like 
an external fi eld and factored out from the SC QD that built its coherence. In 
panel (  Fig. 9.14d ), when the system is still not fully grown as a classical and 
continuous fi eld, the scattering is reversed; the cavity is resonantly sucking the 
excitation from the dot to build its coherent fi eld, resulting in the negative  δ  
peak. We witness in this process a beautiful self-consistent coherence build-up 
in a quantum system that evolves into a classical one.   

 9.8     Conclusions and  future trends

 Some results related to the young fi eld of strong coupling of a QD in a micro-
cavity have been discussed. In the wider context of cavity QED, the semicon-
ductor implementation presents, at a fundamental level, a few specifi cities of 
its own, essentially, a noisy environment that brings extraneous sources of exci-
tation and dephasing. Its coupling strength is small compared to decay rate of 
one bare mode, usually the cavity, but can greatly exceed the other mode, lead-
ing to peculiar interference effects. In this regime of few Rabi oscillations, one 
should pay particular attention to such details as which effective quantum state 
is realized in the system and through which channel of emission it is detected. 



326 Quantum optics with semiconductor nanostructures

© Woodhead Publishing Limited, 2012

Doing so, an excellent quantitative agreement with all experiments that have 
been subjected to this analysis has been obtained. The fi eld will be mature for 
applications when a deep understanding of the physics and complete control of 
experimental realizations has been achieved. We have shown that a qualitative 
description might be incorrect, with such confi gurations where an observed 
splitting in PL could be confused for a Rabi splitting or the other way around. 
At the same time, fi rst results analysing PL have been very encouraging and 
suggest that semiconductors do implement a robust version of the fundamen-
tal Jaynes–Cummings Hamiltonian. So far the crowning achievements from 
the experimental point of view are the VRS, reported in late 2004, and the 
lasing in SC, reported in early 2010. Even these two milestones leave much 
room for further developments, such as control of the quantum state real-
ized in the system, observation of the SC dynamics in the two complementary 
channels that are the cavity and direct QD emission, or, more interestingly, 
investigation of the branching between these two limits, with manifestation of 
new fundamental structures such as a new kind of Mollow triplet. The more 
interesting intermediate quantum regime where a few quanta undergo the SC 
dynamics still remains elusive. Puzzling phenomena have been reported in the 
form of spectral triplets. As the fi eld progresses with a deeper control of the 
system parameters, schemes of excitation and methods of detection, more of 
the phase-space of weak and strong coupling will be explored and more of the 
spectral shapes that we have presented will surface.   
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