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Violation of classical inequalities by photon frequency filtering
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The violation of the Cauchy-Schwarz and Bell inequalities ranks among the major evidence of the genuinely
quantum nature of an emitter. The conventional theoretical approaches associate operators with spectral lines to
study correlations between photons from real-state transitions. Instead, we use a formalism that studies directly
correlations between the physical reality—the photons—with no prejudice as to their origin. This allows us to
extend photon correlations to all frequencies in all the possible windows of detection and to reveal landscapes of
two-photon correlations that delineate regions of quantum emission, i.e., where classical inequalities are violated.
We show that quantum correlations are rooted in the joint emission of two photons involving virtual states of the
emitter instead of, as previously assumed, cascaded transitions between real states. As a result, correlations can
be optimized in a process akin to distillation by keeping only the emission which is quantum and filtering out
that which is not.
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I. INTRODUCTION

Classical descriptions of the electromagnetic field [1] and
local hidden variable theories [2] yield a series of inequalities
that impose an upper limit on the correlations between
two modes and whose violation proves unequivocally the
nonclassical character of quantum mechanics [3]. Among
such equalities, the Cauchy-Schwarz inequality (CSI) and
Bell’s inequalities (BIs) are prominent examples that have
been scrutinized in a large and varied set of platforms. The
CSI [4] is one of the most important relations in all of
mathematics. It states that fluctuations of products of random
variables are bounded by the product of autocorrelations:
|〈XY 〉| �

√
〈X2〉〈Y 2〉. When X and Y are quantum observ-

ables, however, this relation can be violated. That is, quantum
correlations between two separate objects can be so strong
as to overcome their individual fluctuations in a way that is
unaccountable by classical physics. BIs, on the other hand,
refer to the wider problem of the nonlocal character of quantum
mechanics [5]. Their violation decides in favor of quantum
theory over local hidden variable theories. The underlying
correlations are well known to power quantum information
processing [6].

The first experimental demonstrations of violation of these
inequalities were realized in the 1970s, in the radiation of
an atomic two-photon cascade, for the CSI [7] and in the
early 1980s for the BIs [8,9]. There has been a large body
of literature confirming and documenting such violations ever
since [10–16]. Most experimental realizations in both cases
involve the correlation of photons of different frequencies
emitted in a multiphoton process, such as atomic cascades [8]
and four-wave mixing [13,17]. In the underlying theoretical
models, these photons are attributed to “decay operators”
that correspond to specific optical transitions [3]. This facil-
itates the calculation of frequency correlations in terms of
these operators. They are, however, abstract mathematical
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representations of the photons, the latter being the only
physical reality perceived by the measuring devices. One can
inquire what are the correlations between photons with a given
property—typically, frequency for the CSI and polarization
for the BIs—with no theoretical prejudice as to their origin
in terms of underlying operators. For instance, one can ask
what are the correlations from spectral windows that do not
correspond to transitions that such a model can represent
through suitable decay operators. In this text, we address
this question in a general context for frequency correlations,
but to fix ideas, we illustrate our claims with one particular
source of photons. To emphasize that frequency-correlated
photons do not need to be attached to different modes,
we consider a single-mode emitter. The simplest nontrivial
candidate—resonance fluorescence—is also of great intrinsic
interest and has been a favorite test bed of quantum optics [18].
To make clear that this is a general theme that is not specific
to this system, however, we also briefly discuss similar results
in the Jaynes-Cummings dynamics [19].

II. FREQUENCY CORRELATIONS IN RESONANCE
FLUORESCENCE

Resonance fluorescence refers to the light emitted under
coherent driving by a two-level system (2LS) [20–22]. At
a high pumping intensity, the luminescence spectrum splits
into three peaks, known as the Mollow triplet [23] [cf.
Fig. 1(a)]. While the emission comes from a single mode,
σ , the distinctive spectral shape calls naturally to question
what are the correlations of—and between—the three peaks.
It has been suggested theoretically [24–27] and established
experimentally [26,28,29] that the photons from the peaks are
strongly correlated. The Hamiltonian for this system reads

H0 = ωσσ †σ + �(e−iωLt σ † + eiωLtσ ), (1)

with ωσ the energy of the 2LS and � the intensity of the field
driving it with frequency ωL. With little loss of generality
we consider resonant excitation: ωL = ωσ . Dissipation for
the emitter is included in the density matrix formalism as
a Lindblad term Lσ ρ with decay rate γσ in the master
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FIG. 1. (Color online) Violation of the CSI and BIs by frequency-
resolved correlations. (a) Spectrum of resonance fluorescence, where
filtering is illustrated in the tails (T), sidebands (S), and central peak
(C) of the Mollow triplet. (b) Two-photon de-excitation between rungs
of the Mollow ladder involve an intermediate real state (blue, orange,
and green arrows) or a virtual state (red arrows). The latter type
conveys CSI and BI violation. It is found in the flanks or between the
peaks, where the signal is, however, weaker. Parameters: � = 10γσ ,
� = γσ , ωS ≈ 2 �, ωT = 2.5 �.

equation [30]:

ρ̇ = −i[H0,ρ] + γσ

2
Lσ ρ, (2)

where Lσ ρ = 2σρσ † − σ †σρ − ρσ †σ . One can solve this
equation to obtain an analytical expression of the spectrum
featuring the Mollow triplet [23,31], which, at resonance,
presents a central peak and two sidebands at ω = ωL ± ωS ,
where

ωS = Re{
√

(2�)2 − (γσ /4)2}. (3)

At this point, an ad hoc multiple-mode description is
usually enforced out of the genuine single mode σ which,
dressed by the laser, yields three types of transitions between
the dressed states |±〉 [cf. Fig. 1(b)]. This allows us to
introduce three auxiliary decay operators associated with the
three peaks: σ1 = c2|−〉〈+|, σ2 = cs[|+〉〈+| − |−〉〈−|], and
σ3 = −s2|+〉〈−|, with s and c two amplitudes [25,27]. One
can easily compute correlations 〈σ †

i σ
†
j σjσi〉 for 1 � i,j � 3

among these operators, which are associated in the input-
output formalism with those 〈a†

i a
†
j ajai〉 of the detected pho-

tons at a given frequency [32]. There are various shortcomings
to this approach, which is an approximation rooted in the
physical picture of the dressed atom. First, the identification
of each photon to a given transition based on its frequency is a
simplification. Although infrequent, it happens that a photon
detected at the frequency of a given peak actually originates
from the transition that chiefly accounts for another peak.
When considering regions of overlap, such a misattribution
can become a source of large errors. Second, this approach
neglects interferences between photons that truly are emitted
by the same mode σ . Third, operators defined in this way
are usually noncommuting, and therefore correlations at zero
delay can yield different results depending on the order of the

operators [26]. Last, but not least, this approach also restricts
the calculation to the three operators thus defined, while one
can correlate any two frequency windows, of various widths
and centered at arbitrary frequencies, not necessarily at the
peak maxima.

III. THEORY OF FREQUENCY CORRELATIONS

To dispense with these approximations and constrains,
an exact theory of frequency-resolved photon detection is
required to correlate any two photons based only on their
measured properties, with no assumption as to their origin or
time of emission. The formal expression for the second-order
correlation function between photons of two frequencies
without resorting to contrived operators was formalized in
the late 1980s [33,34]. We denote it g

(2)
� (ω1,ω2). It provides

the statistics of photons with frequencies ω1 and ω2 spectrally
filtered in a Lorentzian window of width �. The resulting
integral form turns out to be so awkward, however, that even
in the possession of the expression, there was the need to return
to the auxiliary operator approximation to compute it. In this
paper, we use del Valle et al.’s theory of frequency-resolved
photon correlations [35] to compute this measurable property
exactly, with no intermediate artificial decay operators and,
therefore, taking into account all the possible interferences
and indistinguishability imposed by quantum mechanics. This
theory establishes that frequency-resolved correlations of the
light emitted by any open quantum system are the same as
the correlations between “sensors” at these frequencies. These
sensors are bosonic, commuting modes with annihilation oper-
ator ai , i = 1,2, free energy ωi , and decay rate �—accounting
for the frequency linewidth of the sensors—which are weakly
coupled to the emitting mode with a small coupling constant
ε. They are included in the dynamics by the Hamiltonian
term HS = ∑

i ωia
†
i ai + ε(a†

i σ + aiσ
†) and Lindblad terms

�
2

∑
i Lai

ρ [35]. Frequency-resolved correlations are then
computed as

g
(2)
� (ω1,ω2) = lim

ε→0

〈a†
1a

†
2a2a1〉

〈a†
1a1〉〈a†

2a2〉
. (4)

With such a theoretical apparatus, a full mapping of the
photon correlations can be obtained. For the case of the Mollow
triplet, which we have chosen for illustration, the problem takes
the vivid form pictured in Fig. 1. The spectral shape—the
triplet—is represented on a log scale with a choice of five
frequency windows, centered at ±ωT (tails), ±ωS (sidebands),
and ωC (central peak). A quantum Monte Carlo trajectory
was calculated to simulate the photon detection events [36]
for photodetectors measuring in these windows. The emitted
photons in a small fraction of the trajectory are represented by
ticks on the projected plane in Fig. 1(a). The intensities vary
in each frequency window: there is of course more signal in
the central peak than in the sidebands and more there than
in the tails. What is of interest in quantum optics is the
statistical distribution of, and the correlation between, these
photons. The autocorrelation in a given window, shown in the
lower part of Fig. 1(a), gives the statistics of emission of the
stream of photons now defined by their mean frequency and
spread. While the light emitted by the 2LS overall is perfectly
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antibunched, one sees that with spectral filtering, one can
“distill” light with different statistical properties [37], namely,
(i) uncorrelated in the tails, (ii) antibunched in the satellite
peaks, and (iii) bunched in the central peak. One can similarly
calculate the cross-correlations between photons from two
different windows, showing, this time, that photons from
the satellites are positively correlated, g

(2)
� (−ωS,ωS) ≈ 1.5,

while photons from one satellite and the central peak are
anticorrelated, with g

(2)
� (ωC,ωS) ≈ 0.23. It is noteworthy here

that the stronger correlations come from the tail events, with
g

(2)
� (−ωT ,ωT ) ≈ 14 for the window chosen and increasing

with greater still separations. The price to pay for these strong
correlations is a correspondingly vanishing signal. Events are
rarer, but the strength of their correlations is increased. This is
a general trend.

IV. VIOLATION OF CAUCHY-SCHWARZ AND BELL’S
INEQUALITIES BY FREQUENCY FILTERING

In a quantum optical context, the CSI and BIs can be
expressed through the correlators 〈a†

i a
†
j ajai〉, with i,j ∈ {1,2},

of two electromagnetic modes, a1 and a2. In terms of
Glauber’s second-order correlation functions at zero delay,
g

(2)
ij = 〈a†

i a
†
j aj ai〉/(〈a†

j aj 〉〈a†
i ai〉) [38], the CSI reads [g(2)

12 ]2 �
g

(2)
11 g

(2)
22 . This can be expressed in terms of a ratio R that

quantifies the degree of CSI violation,

R = [
g

(2)
12

]2
/
[
g

(2)
11 g

(2)
22

]
, (5)

so the CSI takes the form

R � 1. (6)

One can use definition (4) for the cross correlations of Eq. (5)
to obtain a degree of CSI violation R�(ω1,ω2) for frequency-
filtered light.

The case of the BIs is less straightforward but can be cast
in the same form. In the CHSH framework [39], one considers
correlated pairs of particles. One of these particles enters an
apparatus where an observable Aθ is measured, while the other
particle enters another apparatus where an observable Bφ is
measured. θ and φ are adjustable parameters of the appara-
tuses, e.g., a polarization angle. The results of each measure-
ment must be dichotomic, i.e., in each apparatus, the particle
must select one of two possible channels of the observables,
providing values ±1 (in some units) with probabilities P

(Aθ )
±

and P
(Bφ )
± , respectively. Therefore, the measurement in each

apparatus yields the mean values 〈Aθ 〉 = P
(Aθ )
+ − P

(Aθ )
− and

〈Bφ〉 = P
(Bφ )
+ − P

(Bφ )
− . As a consequence of this dichotomic

character, the correlation E(θ,φ) = 〈AθBφ〉 between both
observables reads

E(θ,φ) = P
(Aθ ,Bφ )
++ + P

(Aθ ,Bφ )
−− − P

(Aθ ,Bφ )
+− − P

(Aθ ,Bφ )
−+ , (7)

where P
(Aθ ,Bφ )
±± is the joint probability of measuring Aφ = ±1

and Bφ = ±1. From this expression in a local hidden variable
theory, one can derive a BI in the CHSH form [3,39],

B � 2, (8)

where

B = |E(θ,φ) − E(θ,φ′) + E(θ ′,φ′) + E(θ ′,φ)|. (9)

To clarify these concepts, we first consider the case usually
discussed, in which the particles being correlated are photons
and the measurements are done in the polarization degree of
freedom. By the nature of the observable, P

(Aθ )
± corresponds

to the fraction of the total intensity at both output arms of a
polarizing beam splitter,

P
Aθ± = 〈I (Aθ )

± 〉/〈I (Aθ )
+ + I

(Aθ )
− 〉 , (10)

where the adjustable parameter θ corresponds to the polariza-
tion angle. Correspondingly, the joint probability reads

P
Aθ ,Bφ

±∓ = 〈I (Aθ )
± I

(Bφ )
∓ 〉

〈(I (Aθ )
+ + I

(Aθ )
− )(I

(Bφ )
+ + I

(Bφ )
− )〉

, (11)

and therefore, we can write E(θ,φ) as

E(θ,φ) = 〈(I (Aθ )
+ − I

(Aθ )
− )(I

(Bφ )
+ − I

(Bφ )
− )〉

〈(I (Aθ )
+ + I

(Aθ )
− )(I

(Bφ )
+ + I

(Bφ )
− )〉

. (12)

This is the typical situation when measuring BI violations
for states of the type

|ψ〉 = 1√
2

(a†
1+a

†
2+ + a

†
1−a

†
2−)|0〉, (13)

where a
†
i,± is the creation operator for a photon with polariza-

tion ± along path i, i.e., for states that are entangled.
In our work, we focus on the correlations from the output

of a dynamical process, that is, we do not restrict ourselves to
deterministic pure states [3] but consider a steady state as an
input. This means that the intensities I

(Aθ/Bφ )
± are not restricted

to unity but can take any positive value. Moreover, we focus
on a different scenario that does not involve the polarization
degree of freedom, but only two modes states of the type
|ψ〉 = a

†
1a

†
2|0〉. When disposing of an emitter that provides

such a two-mode output, it can immediately be brought into
an entangled form,

|ψ〉 = 1
2 (a†

1+a
†
2+ − a

†
1−a

†
2− + ia

†
1−a

†
2+ + ia

†
1+a

†
2−)|0〉, (14)

by placing two beam splitters across paths 1 and 2. The
subscripts ± then refer to path instead of polarization. By
recombining the four resulting beams in two additional
beam splitters with variable transmittivities, which act as the
apparatuses measuring Aθ and Bφ , these states can also violate
the BIs by following the same line of reasoning as exposed
above [3,39]. θ and φ represent, in this case, the tunable
transmittivities of the two final beam splitters.

The setup implementing such a scheme of BI based on
frequency filtering is sketched in Fig. 2, where the path degree
of freedom 1,2 is associated with the energy degree of freedom
ω1,ω2 using frequency filters. The two possible channels of
detection in each final beam splitter are then equivalent to the
two output ports of the polarizing filters of the conventional
case, and the arguments that led to Eqs. (10) and (11) apply
similarly. In a quantum-mechanical treatment, the modes at
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FIG. 2. (Color online) Test for the violation of Bell inequalities
by frequency filtering. A source (S) emits photons in a broadband of
frequencies. Frequency filters (F) select light at frequencies ω1 and
ω2, described by the operators a1 and a2. Recombination at beam
splitters (BS) with transmittivities given by sin θ and sin φ gives a
total of four output beams, which are collected at the photodetectors
(PD) and correlated with coincidence counters (C). Alice (A) and
Bob (B) test nonlocality by independently measuring the probability
of detection at the output ports of the two beam splitters, P

Aθ± and

P
Bφ

± .

the output arms of the beam splitters are given by

c1 = cos θa1 + sin θa2, c2 = − sin θa1 + cos θa2,
(15)

b1 = cos φa1 − sin φa2, b2 = sin φa1 + cos φa2,

and E(θ,φ) takes the form

E(θ,φ) = 〈: (c†1c1 − c
†
2c2)(b†1b1 − b

†
2b2) :〉

〈: (c†1c1 + c
†
2c2)(b†1b1 + b

†
2b2) :〉

. (16)

We adopt the standard choice of angles, which provides the
greatest violation of the inequality: θ = 0, φ = π/8, θ ′ = π/4,
φ′ = 3π/8. This yields the following expression for B:

B=
√

2

∣∣∣∣

〈
a
†2
1 a2

1

〉 + 〈
a
†2
2 a2

2

〉 − 4
〈
a
†
1a

†
2a2a1

〉 − 〈
a
†2
1 a2

2

〉 − 〈
a
†2
2 a2

1

〉

〈
a
†2
1 a2

1

〉 + 〈
a
†2
2 a2

2

〉 + 2
〈
a
†
1a

†
2a2a1

〉

∣∣∣∣.

(17)
It is equally easy to formulate these concepts in terms of

frequency correlations as for the CSI. The operators a1 and a2

in Eq. (15) can be replaced with the sensor operators previously
introduced and employed in Eq. (4), thus describing the light
emitted at the two frequencies ω1 and ω2, as shown in Fig. 2.
Direct application of Eq. (17) with these sensors ai , whose
finite linewidth � is described by their decay rate, provides
B�(ω1,ω2).

V. RESULTS

A. Resonance fluorescence

At this point, we have set the stage to fully characterize
the quantumness of the emission in terms of violation of the
CSI and BIs spanning all the frequencies of emission and
windows of detection. Note the considerable improvement
compared to the approach that assigns a decay operator to each
spectral line, since a continuum of frequencies in windows of

arbitrary sizes can now be investigated without assumptions
about the order of emission. Figure 3 shows three correlation
landscapes in the frequency domain depicting the value of
g

(2)
� (ω1,ω2), R�(ω1,ω2), and B�(ω1,ω2) for three values of the

detector linewidth in an otherwise identical configuration. An
animation of the full landscapes of correlations as a function
of the linewidth of filtering is provided in the Supplemental
Material [40]. It is immediately apparent that the quantum
character of the emission, where the inequalities are violated,
is structured along three antidiagonals. In particular, the
anticorrelation g

(2)
� (ω1,ω2) < 1 [corresponding to the blue

areas in Fig. 3(a)] is a CSI violation in time when ω1 = ω2 and
therefore corresponds to a nonclassical effect [41]. It makes
no such guarantee, however, of a genuine quantum nature
when ω1 
= ω2 and, in fact, could even be produced by a
classical emitter [42]. The corresponding CSI violation in time
in this case is [g(2)

� (τ,ω1,ω2)]2 > g
(2)
� (0,ω1,ω1)g(2)

� (0,ω2,ω2),
which we study at zero time delay τ = 0 in Fig. 3(b).
Comparing these two rows, one can see that the regions of
CSI violation correspond not to frequency antibunching but,
quite the opposite, to frequency bunching. The reason for
this lies in the nature of the violation, with cross-correlations
being higher with respect to autocorrelations than permitted
by classical physics. Physically, the antidiagonals where this
happens are precisely those where two-photon emission occurs
in a “leapfrog process” [43], i.e., a jump over the intermediate
real state by involving a virtual state instead. This generates
the state |11〉, which, fed to beam splitters, generates the
maximally entangled state that optimizes the violation. The
antidiagonal, line I, corresponds to transitions from |+〉 to
|+〉 or from |−〉 to |−〉, two rungs below, as sketched
in Fig. 1(b), thus satisfying ω1 + ω2 = 0. Line II and its
symmetric correspond to transitions from |+〉 to |−〉 and from
|−〉 to |+〉, respectively, satisfying ω1 + ω2 = ±ωS . The CSI
and BIs are less, or are not, violated whenever the intermediate
rung intersects a real state, as shown by the fact that the green
(for R�) and red (for B�) regions are depleted or pierced when
intersecting the sidebands ±ωS . This is particularly important
since previous studies have focused precisely on correlations
between real transitions, i.e., between peaks, such as indicated
by the red square in the rightmost panel in Fig. 3(a). Instead,
the exact treatment shows that these are detrimental to the
effect, that is optimum when involving virtual states, since
these are the vector of quantum correlations. It is easy to prove,
from the closed form expression Eqs. (6)–(8) in Ref. [43],
that a single-mode emitter with no dressing (here by the
laser) never violates the CSI, regardless of the frequencies
and detection widths. The same was checked numerically for
the case of the BIs. Notably, this is true even if the emitter is
a 2LS and exhibits perfect antibunching, g(2)(τ = 0) = 0. All
this evidence confirms that CSI and BI violations are rooted
in the quantum dynamics that involves a virtual state in a
collective de-excitation in the quantum ladder of the dressed
states. Here, one must keep in mind that there is only one
emitter, so collectivity does not refer to the cooperation of
multiple emitters, as is usually the case with effects such as
superradiance [44], but refers to the joint action of multiple
excitations of the one emitter. In our case, indeed, two photons
team up to undergo a de-excitation that they can only realize
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FIG. 3. (Color online) Landscapes of correlations in the frequency domain for three filter linewidths: (a) g
(2)
� (ω1,ω2), (b) R�(ω1,ω2), and

(c) B�(ω1,ω2). In (b) [(c)], the color code is such that green [red] violates the CSI [BI] and thus corresponds to genuine quantum correlations
between the detected photons in the corresponding energy windows, while black and white do not (with white maximizing the inequality). The
violation originates from the emission that involves virtual states. Dashed lines I and II in (a) are the cuts in the frequency domain along which
the curves in Fig. 4 are calculated. Spectra on the axes show which frequency windows are correlated. Parameters are the same as in Fig. 1. An
animation of these landscapes as a function of the detector linewidth is provided in the Supplemental Material [40].

together. Such pairs of photons are at the origin of the quantum
emission: other types of de-excitation, which are not collective
in this sense, do not violate the classical inequalities.

A more quantitative reading of these results is given in
Figs. 4(a) and 4(b), which shows slices in the landscapes along
lines I and II in the rightmost panel in Fig. 3(a). The quantum
correlations violating the CSI are found in the side peaks and
beyond, being larger the farther they are from the peaks. The
same feature is present in the BI violation, which, furthermore,
tends to the maximum value allowed, B� = 2

√
2. Figures 4(c)

and 4(d) show g
(2)
� (ω,ω) and g

(2)
� (ω, − ω)—which can be

used to derive R�(ω, − ω) and an approximation of B�(ω, −
ω) [45]—as calculated exactly [solid (red) lines] [35,43] and
through the approximation of auxiliary decay operators used
in previous works [dashed (blue) lines] [26,27]. In such an
approximation, the estimation is local around the peaks, that
is, at ω/ωS = ±1 and 0, where it is seen to be fairly accurate
indeed, although not numerically exact. It can still lead to
qualitative error, e.g., the autocorrelation at the sidebands is
exactly 0 in this approximation, predicting arbitrary violation

of the CSI even when it is obeyed. A violation of the
BIs was also predicted [46], however, it was considered ill
defined due to the perfect antibunching of the sidebands.
Furthermore, these expressions are found in limiting cases
for the filter linewidths: either � � γσ � � or γσ � � � �.
Both assume that the peaks are well separated to allow for
the auxiliary operator approximation. They predict no CSI or
BI violation for narrow filters, which is ultimately verified,
although in the case of CSI, it is for values of the detector
linewidth so small that they are unphysical. Solid lines in
Fig. 5(a) show the dependence of R� and B� on the detector
linewidth � for the three sets of frequencies (ωi, − ωi),
i ∈ 1,2,3, depicted in Fig. 5(b). For the already extremely
small value of frequency windows � = 0.1γσ , the CSI and
BIs can be violated, in contradiction with the prediction of the
auxiliary operator approximation.

There are mainly three regimes of frequency correlations:
narrow filters, peak filtering, and overlapping windows. While
narrow filters better define the structure, as shown in Fig. 3,
they also correspond to longer times of integration due to
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FIG. 4. (Color online) (a, b) Cuts of R� (a) and B� (b) along
lines I (ω, − ω) and II (ω,ωS − ω) in Fig. 3(a). Parameters are the
same as in Fig. 1, with � = γσ . (c, d) Photon correlation g

(2)
� (ω, ± ω)

computed exactly [solid (red) lines] or through the usual auxiliary
operator approximation [dashed (blue) lines]. In (d), the absence of
the latter curve in some domains corresponds to values which are,
incorrectly, exactly 0 (the vertical axis is on log scale).

the time-frequency uncertainty and thus average out the
correlations. A maximum is found when filtering in windows
of the order of the peak linewidth or above, which is a
welcomed result for an experimentalist. The overlap of the
filters marks a change of trend in all the curves, due to
a competition between various phenomena involving, for
instance, various transitions as well as averaging over different
types of interferences. Dashed lines in Fig. 5(a) show the
value of �S�(ω) corresponding to the amount of signal that
can be collected with a detector of linewidth � at frequency
ω [35]. In this way, one can easily compare, for a given
amount of available signal, the different degrees of violation
which are accessible simply by selecting the frequency and the
window of the detector appropriately. Since such correlations
are useful for technological purposes, the ability to compute
the entire landscape of frequency correlations becomes helpful
for optimizing quantum information processing. Correlations
along line I of the map arise from a well-defined family of
virtual processes, from which sideband correlations have been
shown to be just a particular—and, in fact, also a detrimental—
case. By positioning the filters away from the sidebands and
increasing the frequency window of detection, it is possible to
extract light showing stronger quantum correlations without

FIG. 5. (Color online) (a) Solid lines: R�(ωi, − ωi) (top) and
B�(ωi, − ωi) (bottom) as a function of the detector linewidth for
the three sets of frequencies (ωi, − ωi), i ∈ 1,2,3, depicted in (b).
Dashed lines: Amount of signal �S�(ω) that can be collected for the
corresponding filter linewidth. Filled (blue) circles illustrate how two
configurations with the same amount of collected signal can yield
different degrees of violation. (b) Resonance fluorescence spectrum,
this time on a linear scale, displaying the characteristic Mollow triplet
and three sensors with linewidth � = 2γσ centered at the frequencies
used for (a): ω1 = ωS , ω2 = 1.125 ωS , and ω3 = 1.25 ωS . Parameters
are the same as in Fig. 1.

any detrimental effect on the signal. In this way, one can
optimize quantum correlations in a distillation process in
which only photons with sought correlations are retained, and
the others are filtered out.

B. Jaynes-Cummings

The previous results are general, as they relate to the added
information one can gain from frequency filtering, rather than
on the specificities of the source. While resonance fluorescence
is a particular fruitful emitter with which to investigate such
effects, the same principles apply in any other system that
emits correlated photons and that has a spectral structure.
To illustrate this point, we show in Fig. 6 similar features
observed in the case of the Jaynes-Cummings model [19],
in which a 2LS interacts with a single electromagnetic mode
via the Hamiltonian H = g(a†σ + aσ †) and with Lindblad
terms to describe the incoherent pumping of the 2LS as well
as decay of both the 2LS and the electromagnetic mode,
leading to the Liouville equation ρ̇ = −i[H,ρ] + ( γσ

2 Lσ +
γa

2 La + Pσ

2 Lσ † )ρ. The spectral shape of this system is the Rabi
doublet at low pumping and a Jaynes-Cummings multiplet
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FIG. 6. (Color online) Landscapes of correlations for the Jaynes-
Cummings model featuring violation of both the Cauchy-Schwarz
inequality (upper left) and the Bell’s inequalities (bottom right). The
full landscape for each case follows by symmetry. Parameters: γσ =
10−3g, γa = 0.1g, Pσ = 0.05g, and � = 0.1g.

when transitions from higher rungs get activated at higher
pumping. In Fig. 6, one can observe how, again, regions of
quantum emission appear along the lines that correspond
to families of virtual two-photon processes in the Jaynes-
Cummings ladder [43]. There is a region of CSI violation

between the Rabi peaks but it is hindered by the proximity
of real-state transitions. The BIs are, overall, more difficult
to violate than in resonance fluorescence. At lower pumping,
only the CSI violation survives, and with regions of quantum
emission closely associated with those of photon bunching (not
shown). A full analysis would bring us to the peculiarities of
the Jaynes-Cummings dynamics and therefore goes beyond
the scope of this text, which focuses on the principle of
frequency filtering to optimize the violation of classical
inequalities.

VI. CONCLUSIONS AND PERSPECTIVES

We have shown how to demonstrate and optimize CSI and
BI violations between photons resolved in frequency from
a quantum source, with no constraints or approximations
from the theoretical description. Maximum violation is to
be found not when correlating peaks in the spectrum, as
previously thought, and thus linked to transitions between real
states, but when involving virtual processes in the quantum
dynamics. These results show the potential of frequency
correlations to engineer quantum correlations and could be
applied towards the design of optimum quantum information
processing devices.
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