
INTERFERENCE, BEATS, AND STANDING WAVES

Harmonic Interference in General

Consider a superposition of two signals of some kind — displacements of a rope, pressures

in a sound wave, voltages in an electric circuit, whatever — that change harmonically with

time with the same frequency f ,

ynet = A1 × sin(2πft+ φ1) + A2 × sin(2πft+ φ2). (1)

This superposition looks complicated, but if the two signals have similar amplitudes A1 =

A2 = A, we may use a trigonometric identity

sinα + sin β = 2 cos
α− β

2
× sin

α+ β

2
(2)

to re-write the two-signal superposition (1) as a single harmonic signal

y = 2A cos
φ1 − φ2

2
× sin(2πft + φavg) (3)

with amplitude

A = 2A×

∣

∣

∣

∣

cos
φ1 − φ2

2

∣

∣

∣

∣

. (4)

Note that this amplitude depends on the phase difference ∆φ = φ1 − φ2 between the two

original signals.

The power of a signal is proportional to the square of its amplitude — P = CA2 for

some constant coefficient C. Thus, each of the two original signals has power Psingle = CA2

while the combined signal has power

Pcomb = CA2 = C×4A2 cos2
∆φ

2
= 2CA2×

(

1+ cos(∆φ)
)

= 2Psingle + 2Psingle×cos(∆φ).

(5)

The first term on the right hand side is simply the net power of two single signals, while

the second phase-dependent term is due to interference. For ∆φ = 0,±2π,±4π,±6π, . . .,

cos(∆φ) = +1 and the interference is constructive: the combined signal has more power

than the two single signals put together. On the other hand, for ∆φ = ±π,±3π,±5π, . . .,

cos(∆φ) = −1 and the interference is destructive: the two signals cancel each other.
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When the two original signals have different amplitudes A1 6= A2 and hence different

powers P1 and P2, the mathematics of interference is more complicated, but the net result

for the combined power is similar to eq. (5):

Pcomb = P1 + P2 + 2
√

P1P2 × cos(∆φ). (6)

In particular, the interference of the two signals depends on the phase difference ∆φ = φ1−φ2

in exactly the same way: For ∆φ = 0,±2π,±4π,±6π, . . . the interference is constructive and

the combined signal has more power than P1 + P2, while for ∆φ = ±π,±3π,±5π, . . . the

interference is destructive and the combined signal has less power than P1 + P2.

Interference Between two Speakers

Now consider interference between sound waves produced by two speakers playing the

same harmonic signal. A single speaker would produce a spherical harmonic wave expanding

in all directions of space: the pressure deviation δP depends on location (x, y, z) in 3D space

and time t as

δP(x, y, z, t) =
A

r
× sin

(

2πf ×
(

t −
r

u

))

=
A

r
× sin

(

2πft −
2πr

λ

)

(7)

where r(x, y, z) is the distance between the speaker and the point (x, y, z), u is the speed of

sound, f is the frequency, and λ = u/f is the wavelength. The phase of this acoustic signal

at point (x, y, z)

φ = 2πf ×
−r

u
= −

2πr

λ
(8)

depends on time r/u the sound needs to travel from the speaker to that point.

When two speakers powered by the same electric signal are playing at the same time,

the pressure deviations add up:

δPnet(x, y, z, t) =
A

r1
× sin

(

2πft −
2πr1
λ

)

+
A

r2
× sin

(

2πft −
2πr2
λ

)

(9)

where r1 and r2 are the distances from the point (x, y, z) to the two speakers. In general,

these two distance are different, which leads to interference between between two signals
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with different phases:

φ1 = −
2πr1
λ

and φ2 = = −
2πr2
λ

. (10)

The phase difference is

∆φ = 2π ×
r2 − r1

λ
, (11)

so the interference is constructive when r2 − r1 = 0,±λ,±2λ,±3λ, . . . and destructive when

r2 − r1 = ±1
2
λ,±3

2
λ,±5

2
λ, . . .

Beats

Now consider two harmonic signals with slightly different frequencies,

y1(t) = A× sin(2πf1t+ φ1) and y2(t) = A× sin(2πf2t+ φ2) (12)

t

y

If the frequency difference f1 − f2 is relatively small, we can treat it as a time-dependent

phase difference. Indeed, let’s apply trigonometric identity (2) to the superposition

ynet(t) = y1(t) + y2(t) = A
(

sin(2πf1t+ φ1) + sin(2πf2t+ φ2)
)

. (13)

For α = 2πf1t+ φ1 and β = 2πf2t+ φ2, we have

α + β

2
= π(f1 + f2)× t + 1

2
(φ1 + φ2) ,

α− β

2
= π(f1 − f2)× t + 1

2
(φ1 − φ2),

and hence

ynet(t) = 2A cos
(

π(f1 − f2)× t + 1
2
(φ1 − φ2)

)

× sin
(

π(f1 + f2)× t + 1
2
(φ1 + φ2)

)

. (14)

If the frequency difference ∆f = f1 − f2 is much smaller than the average frequency favg =

1
2(f1 + f2), we can treat the second factor here as a harmonic signal with frequency favg
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while the first factor acts as a time dependent amplitude:

y(t) = A(t)× sin(2πfavg × t + φavg),

where A(t) = 2A cos
(

π∆f × t + 1
2(φ1 − φ2)

)

.
(15)

t

ynet

The amplitude depends on time because the phase difference between the two signals grows

with time as 2π∆f × t + const. Consequently, the interference between the two signals

alternates between constructive and destructive, so the signal power goes up and down.

This is knows as the beats.

Indeed, the power of the combined signal works similarly to eq. (5), but with a time-

dependent phase difference:

Pnet = 2Psingle + 2Psingle × cos(2π∆f × t + const), (16)

or more generally, for two signals of different powers

Pnet = P1 + P2 + 2
√

P1P2 × cos(2π∆f × t + const). (17)

In any case, the interference term here oscillates with beat frequency

fbeat = |∆f | = |f1 − f2|. (18)

For example, if the two signals have frequencies f1 = 1234 Hz and f2 = 1233 Hz that differ

by just 1 Hertz, their superposition beats once every second.
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Standing waves

Let’s excite a harmonic traveling wave on a string,

y(x, t) = A sin

(

−
2π

λ
× (x− ut)

)

= A sin

(

2πft −
2πx

λ

)

. (19)

When this wave reaches the end of the string, it is reflected and travels back. Then its is

reflected again from the other end, etc., etc. Eventually, we end up with a superposition of

two waves traveling in opposite directions, one to the right and the other to the left,

y(x, t) = AR × sin

(

2πft −
2πx

λ

)

+ AL × sin

(

2πft +
2πx

λ

)

. (20)

Suppose both traveling waves have equal amplitudes AL = AR = A. In this case we may

simplify the net wave using the trigonometric identity (2) for

α = 2πft −
2πx

λ
, β = 2πft +

2πx

λ
, (21)

and consequently

α + β

2
= 2πft and

α− β

2
= −

2πx

λ
. (22)

Therefore, the combined wave can be written as

y(x, t) = 2A cos

(

2πx

λ

)

× sin(2πft). (23)

This function of x and t is a product of a sine wave of t and a cosine wave of x, so it describes

a standing wave.

Note the power of superposition: By superposing two traveling waves moving in opposite

direction, we got a standing wave! Likewise, it is possible to superpose two standing waves

and get a traveling wave, but I will not do it here.

In the standing wave (23), every point x of the string oscillates with with exactly the

same phase (modulo the overall sign). In particular, every point x crosses y = 0 at exactly the
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same time, so the whole string becomes momentarily flat. On the other hand, the amplitude

of oscillations

A(x) = 2A cos
2πx

λ
(24)

depends on position x. Some points x where A(x) = 0 do not oscillate at all; they are called

nodes of the standing waves. For the wave (23) the nodes are located at zeros of the cosine

cos(2πx/λ), thus

xnode = ±1
4λ,±

3
4λ,±

5
4λ, . . . (25)

For other standing waves all the nodes may be shifted to the right or to the left, but the

distances between the nodes are always the same: half-wavelength λ/2 between each node

and the next one.

The points of a standing wave where the oscillation amplitude A(x) is maximal are called

the antinodes. Unlike the nodes located at zeros of the cosine cos(2πx/λ), the antinodes

are points where this cosine becomes +1 or −1. For the wave (23), the antinodes are at

x = 0,±1
2λ,±λ,±3

2λ, . . . but other standing wave can have all the antinodes shifted left or

right. But in any standing wave, the antinodes are located at mid-points between the nodes.

x

y

node antinode

λ/4

node

λ/4

antinode

λ/4

node

λ/4
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Resonances and Harmonics

Suppose a string is tied up — or otherwise fixed in place — at both ends. For example,

the playing part of the guitar string is fixed to the deck at both ends. If you want to set up

a standing wave on such a string, it must have a node at each fixed end. There could also

be additional nodes in the middle of the string, but they are optional.

Suppose a standing wave has just two nodes at the ends of the string but no other nodes.

The distance between the two nodes of a standing wave is λ/2 — half of the wavelength.

But if the nodes happen to be at the two ends of the string, the distance between them must

be equal to the string’s length L, which calls for

L =
λ

2
. (26)

In other words, if a standing wave on a string has just the two required nodes at the string’s

ends and no other nodes, then this standing wave must have wavelength

λ = 2L. (27)

Consequently, it must have a specific frequency

f =
u

λ
=

u

2L
(28)

where u is the speed of waves on the string.
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Now suppose a standing wave has n + 1 = 3, 4, 5, . . . nodes: one node at each end, plus

n− 1 additional nodes in the middle.

n = 3

The nodes are at equal distances λ/2 from each other, so they must divide the string’s length

L into n inter-node intervals, with an antinode — a point of maximal amplitude — in the

middle of each interval. The length of each interval is λ/2, so the net length of the string

must be equal to n such intervals,

L = n×
λ

2
, n = 2, 3, 4, . . . . (29)

Thus, a standing wave with a node at each end of the string and n− 1 nodes in the middle

must have wavelength

λn =
2L

n
(30)

Consequently, the frequency of this wave must be

fn =
u

λn
=

u

2L/n
= n×

u

2L
(31)

For n = 1 we have a wave with no nodes in the middle. Its wavelength and frequency are

given by eqs. (26) and (28) — which are indeed special cases of eqs. (30) and (31).

Altogether, there is a discrete series of allowed standing waves on a string; they are called

modes. Each such mode has a specific frequency (31), and there is a simple relation between

them:

fn = n× f1 . (32)

This relation is very important for music because harmony of sounds depends on their

frequencies being integer multiples of a common frequency. This is true for all modes of any
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particular string: their frequencies — called the harmonics — are integer multiples of the

fundamental frequency

f1 =
u

2L
. (28)

The fundamental frequency itself is the lowest harmonic (also called the fundamental har-

monic), the second harmonic is f2 = 2f1, the third harmonic is f3 = 3f1, etc., etc.

Strictly speaking, a harmonic of a string is a frequency with with it can oscillate, while

the standing wave oscillating with that frequency is a mode. However, people often use the

word harmonic to mean the standing wave itself — i.e., the mode — rather than just its

frequency. This terminology is incorrect, but it’s rather common. The textbook for this

class uses it, so I might use it myself in class or in homeworks.

Many musical instruments use vibrating strings. Striking, plucking, or bowing a string

creates some kind of a wave in it; usually this wave is not a single mode but a superposition

of many modes. Consequently, the sound created by the string is a superposition of many

harmonics. Indeed, such multi-harmonic sounds are much more pleasing to the human

ear than a single-frequency sine wave. But since all the harmonics are multiples of the

fundamental frequency f1 of the string, the whole multi-harmonic sound wave is periodic

with period T = 1/f1. Consequently, the fundamental frequency of a string controls the

pitch of the sound it produces. In musical notations, note names correspond to pitches, i.e.,

fundamental frequencies; for example, the “middle A” (the A note of the middle octave) has

fundamental frequency 440 Hz.

In music, the timbre of a sound is just as important as its pitch. Physically, the timbre

corresponds to the way the sound power is distributed between different harmonics. In a

string instrument, the timbre depends on how exactly is the string plucked, struck, or bowed.

The point of the string that’s plucked, struck or bowed is also important. For example, the

usual way of plucking a guitar string produces sound with most power in the first three

harmonics f1, f2, f3, but plucking a string closer to the bridge would give more power to the

higher harmonics f4, f5, f6, f7.

You don’t have to pluck, strike, or bow a string to make it vibrate. If there is some

vibration in the deck, or even sound in the air, it would act on the string and make a wave

in it. For a generic frequency of the external vibration or sound, the string wave it creates

is rather weak. However, if the frequency of the external vibration or sound matches one of
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the string’s harmonics, then the string’s response would be much stronger. This is called the

resonance.

Many other physical system can resonate in response to a perturbation with just the

right frequency. For example, if a pendulum is pushed and pulled with a weak alternating

force whose frequency happens to match the frequency with which the free pendulum would

swing, this little perturbation can make the pendulum swing with a very large amplitude.

But while the pendulum would resonate at only one frequency, the string has a whole series

of harmonics, and it can resonate to any of them.

Standing Waves in Air Columns

A sound wave is described by two related quantities, the displacement δx(x, t) of the air

forward or backward, and the pressure deviation from the average δP (x, t) = P (x, t)−Pavg.

In a standing wave, both of these quantities oscillate with the same frequency and wavelength,

but they have different nodes (points where the amplitude vanishes) and antinodes (points

where the amplitude is maximal). In fact, the nodes of pressure are antinodes of displacement

while the nodes of displacement are antinodes of pressure.

x

δx

x

δP

Therefore, the distance between two nearby nodes of pressure is λ/2, the distance between

two nearby nodes of displacement if also λ/2, but the distance between a pressure node

and the nearest displacement node is only half of that, namely λ/4. Also, pressure and
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displacement nodes alternate every λ/4: pressure node, displacement node, pressure node,

displacement node, pressure node, displacement node, etc.., etc..

When a standing wave is established in air inside a pipe, the wave must have nodes at

both ends of the pipe. However, the type of a node — a pressure node or a displacement

node — depends on whether the pipe end in question is closed or open to the atmosphere.

A closed end of the pipe must be a node of displacement since the air cannot be displaced

through a closed end. On the other hand, an open end of the pipe has constant pressure

— equal to the pressure outside the pipe — so it must be a node of pressure rather than

displacement. Consequently, the allowed standing waves in a pipe depend not only on the

pipe’s length L but also on whether its ends are both closed, both open, or one closed and

one open.

Let’s start with a pipe with two open ends. A standing wave in this pipe must have

pressure nodes at both ends. If there are no additional pressure nodes in the middle of the

pipe, the distance between the two nodes at pipe’s ends is half-wavelength, which calls for

L = 1
2λ. This gives us the fundamental harmonic of the pipe: its wavelength (in air) is

λopen−open
1 = 2L (33)

and frequency

fopen−open
1 =

u

λopen−open
1

=
u

2L
(34)

where u is the speed of sound in the air inside the pipe.

The higher modes in a pipe with two open ends have n+ 1 pressure nodes: one node at

each end of the pipe, plus n−1 nodes in the middle. Here is the diagram of the n = 3 mode:

pressure δP(x)

displacement δx(x)
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Focusing on the pressure wave, we see the pipe divided into n intervals between the pressure

node; since each interval has length λ/2, this calls for

L = n×
λ

2
. (35)

Consequently, the n the harmonic of the pipe with 2 open ends has wavelength (in air)

λopen−open
n =

2L

n
(36)

and frequency

fopen−open
n =

u

λopen−open
n

=
u

2L/n
= n×

u

2L
. (37)

Similar to the string, the harmonics of an open-open pipe are integer multiples of the fun-

damental frequency,

fopen−open
n = n× fopen−open

fundamental , fopen−open
fundamental =

usound
2L

. (38)

A pipe with two closed ends works similarly to the open-open case, only the pressure

and the displacement nodes of a standing wave trade places: Both closed ends must be

nodes of displacement rather than pressure. The fundamental mode of the standing wave

has only two displacement nodes — one at each end of the pipe — while the higher modes

have additional displacement nodes in the middle of the pipe. Here is the diagram for the

n = 3 mode:

pressure δP(x)

displacement δx(x)

Focusing on the displacement wave, we see the pipe divided into n intervals between the
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pressure node; since each interval has length λ/2, this calls for

L = n×
λ

2
. (39)

Consequently, the n the harmonic of the pipe with 2 closed ends has wavelength (in air)

λclosed−closed
1 =

2L

n
(40)

and frequency

f closed−closed
n =

u

λclosed−closed
n

=
u

2L/n
= n×

u

2L
. (41)

Note that the fundamental frequency

f closed−closed
fundamental =

usound
2L

(42)

and all the harmonics

f closed−closed
n = n× f closed−closed

fundamental , n = 1, 2, 3, 4, . . .

of a pipe with two closed ends are exactly the same as for a pipe with two open ends.

But a pipe with different ends — once closed and one open — has more complicated

standing sound waves. At the open end of the pipe, the wave must have a node of pressure,

while at the closed end the wave must have a node of displacement. Consequently, we cannot

focus on just the pressure wave or just the displacement wave but must consider both waves

at once.

Let’s start with the fundamental mode of the open-closed pipe.

pressure δP(x)

displacement δx(x)
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This mode does not have any nodes at all — pressure or displacement — in the middle of

the pipe; there is only a pressure node at the open end and a displacement node at the

closed end. The distance between such nearby nodes of opposite kinds is λ/4 (unlike the

λ/2 distance between nearby nodes of the same kind), and since they sit at the two ends of

a pipe of length L, we must have

L =
λ

4
. (43)

Consequently, the fundamental harmonic of the open-closed pipe has wavelength

λopen−closed
fundamental = 4L (44)

and frequency

fopen−closed
fundamental =

usound
4L

. (45)

Note that a pipe of length L with different ends (one open, one closed) has the same

fundamental frequency — i.e., the pitch — as a pipe of double length 2L with similar ends

(both open or both closed). For example, a one-meter-long open-closed pipe has the same

pitch 85 Hz as a two-meter-long pipe with both ends open or both closed. However, the

higher harmonics of those pipes would be quite different.

Indeed, higher modes of standing wave in an open-closed pipe have both pressure and

displacement modes in the middle of the pipe. Since the pressure and the displacement

nodes alternate, the n th mode has n pressure nodes (including one node at the open end

and n − 1 nodes in the middle) and also n displacement nodes (including one node at the

closed end and n− 1 nodes in the middle). Here is the diagram for n = 3:

pressure δP(x)

displacement δx(x)
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Altogether there are 2n nodes separated by λ/4 distances between neighboring nodes. Con-

sequently, the total length L of the pipe divides into 2n − 1 intervals of length λ/4 each.

This calls for

(2n− 1)×
λ

4
= L, (46)

hence the n th harmonic of the open-closed pipe has wavelength

λopen−closed
n =

4L

2n− 1
(47)

and therefore frequency

fopen−closed
n =

usound
4L/(2n− 1)

= (2n− 1)×
usound
4L

. (48)

In terms of the fundamental frequency

fopen−closed
fundamental =

usound
4L

, (49)

the higher harmonics are its odd multiplets

fopen−closed
n = fopen−closed

fundamental × (2n− 1). (50)

Thus, the sound created by an organ pipe with different ends (one open and one closed)

would have only the odd multiples of the fundamental frequency: the f1 itself, 3×f1, 5×f1,

7× f1, etc., etc. In contrast, the sound of a pipe with both ends open (or both closed) has

both odd and even multiplets of the fundamental frequency: f1, 2×f1, 3×f1, 4×f1, 5×f1,

etc., etc..
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