Métodos matemáticos II.

Examen de recuperación junio 2014

I. INTEGRATION (2.5 PTS)

Calculate:

$$\int_{-\infty}^{\infty} \frac{dx}{1 + x^2 + x^4} \, .$$

II. DERIVATION (2.5 PTS)

Where is the function $f(z) = \cos(\text{Re}(z)) - i \sinh(\text{Im}(z))$ derivable?

III. HARMONIC FUNCTION (2.5 PTS)

For which integers n is the function $x^n - y^n$ harmonic?

IV. DEMONSTRATION (2.5 PTS)

Provide all the zeros of $\sin(z)$, i.e., the numbers $z \in \mathbb{C}$ such that $\sin(z) = 0$. Prove your result. (Hint: you can study the modulus of $\sin(x+iy)$ with x and y real numbers, that can be expanded, and use the fact that $(z=0) \Leftrightarrow (|z|=0)$).