Bibliography

Agarwal, G. S. & Puri R. R. (1986)

Exact quantum-electrodynamics results for scattering, emission, and absorption from a rydberg atom in a cavity with arbitrary Q, Phys. Rev. A 33: 1757.
http://dx.doi.org/10.1103/PhysRevA.33.1757

Akram, U., Ficek, Z. & Swain S. (2000).

Decoherence and coherent population transfer between two coupled systems, Phys. Rev. A 62: 013413.
http://dx.doi.org/10.1103/PhysRevA.62.013413

Alicki, R. (1989).

Master equations for a damped nonlinear oscillator and the validity of the markovian approximation, Phys. Rev. A 40: 4077.
http://dx.doi.org/10.1103/PhysRevA.40.4077

Amo, A., Lefrère, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., Houdré, R., Giacobino, E. & Bramati A. (2009).

Superfluidity of polaritons in semiconductor microcavities, Nature Phys. On line.
http://dx.doi.org/10.1038/nphys1364

Amo, A., Sanvitto, D., Laussy, F. P., Ballarini, D., del Valle, E., Martin, M. D., Lemaître, A., Bloch, J., Krizhanovskii, D. N., Skolnick, M. S., Tejedor, C. & Vina L. (2009)

Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature 457: 291.
http://dx.doi.org/10.1038/nature07640

Andreani, L. C., Panzarini & Gérard, J.-M. (1999).

Strong-coupling regime for quantum boxes in pillar microcavities: Theory, Phys. Rev. B 60: 13276.
http://dx.doi.org/10.1103/PhysRevB.60.13276

Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala K. J. (2003).

Ultra-high-$ Q$ toroid microcavity on a chip, Nature 421: 925.
http://dx.doi.org/10.1038/nature01371

Ashraf, I., Gea-Banacloche, J. & Zubairy M. S. (1990).

Theory of the two-photon micromaser: Photon statistics, Phys. Rev. A 42: 6704.
http://dx.doi.org/10.1103/PhysRevA.42.6704

Auffèves, A., Besga, B., Gérard, J.-M. & Poizat J.-P. (2008).

Spontaneous emission spectrum of a two-level atom in a very-high-$ Q$ cavity, Phys. Rev. A 77: 063833.
http://dx.doi.org/10.1103/PhysRevA.77.063833

Averkiev, N., Glazov, M. & Poddubny A. (2009).

Collective modes of quantum dot ensembles in microcavities, Sov. Phys. JETP 135: 959.

Awschalom, D. D., Loss, D. & Samarth N. (2002).

Semiconductor spintronics and quantum, computation, Springer.

Badolato, A., Hennessy, K., Atature, M., Dreyser, J., Hu, E., Petroff, P. M. &h; Imamoglu, A. (2005).

Deterministic coupling of single quantum dots to single nanocavity modes, Science 308: 1158.
http://dx.doi.org/10.1126/science.1109815

Barchielli, A. & Pero N. (2002).

A quantum stochastic approach to the spectrum of a two-level atom, J. Opt. B 4: 272.
http://dx.doi.org/10.1088/1464-4266/4/5/308

Barut, A. O. & Huele J. F. V. ( 1996).

Quantum electrodynamics based on self-energy: Lamb shift and spontaneous emission without field quantization, Phys. Rev. A 53: 2816.
http://dx.doi.org/10.1103/PhysRevA.53.2816

Bayer, M., Reinecke, T. L., Weidner, F., Larionov, A., McDonald, A. & Forchel A. (2001).

Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators, Phys. Rev. Lett. 86: 3168.
http://dx.doi.org/10.1103/PhysRevLett.86.3168

Bennett, A. J., Ellis, D. J. P., Shields, A. J., Farrer, P. A. I. & Ritchie, D. A. (2007).

Observation of the purcell effect in high-index-contrast micropillars, Appl. Phys. Lett. 90: 191911.
http://dx.doi.org/10.1063/1.2736292

Benson, O. & Yamamoto Y. (1999).

Master-equation model of a single-quantum-dot microsphere laser, Phys. Rev. A 59: 4756.
http://dx.doi.org/10.1103/PhysRevA.59.4756

Bethe, H. A. (1947).

The electromagnetic shift of energy levels, Phys. Rev. 72: 339.
http://dx.doi.org/10.1103/PhysRev.72.339

Bienert, M., Merkel, W. & Morigi G. (2004).

Resonance fluorescence of a trapped three-level atom, Phys. Rev. A 69: 013405.
http://dx.doi.org/10.1103/PhysRevA.69.013405

Bienert, M., Torres, J. M., Zippilli, S. & Morigi G. (2007).

Resonance fluorescence of a cold atom in a high-finesse resonator, Phys. Rev. A 76: 013410.
http://dx.doi.org/10.1103/PhysRevA.76.013410

Bishop, L. S., Chow, J. M., Koch, J., Houck, A. A., Devoret, M. H., Thuneberg, E., Girvin, S. M. & Schoelkopf R. J. ( 2009).

Nonlinear response of the vacuum Rabi resonance, Nature Phys. 5: 105.
http://dx.doi.org/10.1038/nphys1154

Björk, G., Machida, S., Yamamoto, Y. & Igeta K. (1991).

Modification of spontaneous emission rate in planar dielectric microcavity structures, Phys. Rev. A 44: 669.
http://dx.doi.org/10.1103/PhysRevA.44.669

Boca, A., Miller, R., Birnbaum, K. M., Boozer, A. D., McKeever, J. & Kimble, H. J. (2004).

Observation of the vacuum Rabi spectrum for one trapped atom, Phys. Rev. Lett. 93: 233603.
http://dx.doi.org/10.1103/PhysRevLett.93.233603

Brandes, T. (2005).

Coherent and collective quantum optical effects in mesoscopic systems, Phys. Rep. 408: 315.
http://dx.doi.org/10.1016/j.physrep.2004.12.002

Braun, D. (2002).

Creation of entanglement by interaction with a common heat bath, Phys. Rev. Lett. 89: 277901.
http://dx.doi.org/10.1103/PhysRevLett.89.277901

Brune, M., Raimond, J. M., Goy, P., Davidovich, L. & Haroche S. (1987).

Realization of a two-photon maser oscillator, Phys. Rev. Lett. 59: 1899.
http://dx.doi.org/ 10.1103/PhysRevLett.59.1899

Brune, M., Schmidt-Kaler, F., Maali, A., Dreyer, J., Hagley, E., Raimond, J. M. & Haroche S. (1996).

Quantum Rabi oscillation: A direct test of field quantization in a cavity, Phys. Rev. Lett. 76: 1800.
http://dx.doi.org/10.1103/PhysRevLett.76.1800

Brunner, K., Bockelmann, U., Abstreiter, G., Walther, M., Böhm, G., Tränkle, G. & Weimann G. (1992).

Photoluminescence from a single GaAs/AlGaAs quantum dot, Phys. Rev. Lett. 69: 3216.
http://dx.doi.org/10.1103/PhysRevLett.69.3216

Carmichael, H. J. (2002).

Statistical methods in quantum optics 1, 2 edn, Springer.

Carmichael, H. J., Brecha, R. J., Raizen, M. G., Kimble, H. J. & Rice, P. R. (1989).

Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators, Phys. Rev. A 40: 5516.
http://dx.doi.org/10.1103/PhysRevA.40.5516

Carusotto, I. & Ciuti C. (2004).

Probing microcavity polariton superfluidity through resonant rayleigh scattering, Phys. Rev. Lett. 93: 166401.
http://dx.doi.org/10.1103/PhysRevLett.93.166401

Casimir, H. B. (1948).

On the attraction between two perfectly conducting plates, Proc. K. Ned. Akad. Wetensch. 51: 793.

Chang, W.-H., Chen, W.-Y., Chang, H.-S., Hsieh, T.-P., Chyi, J.-I. & Hsu, T.-M. (2006).

Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities, Phys. Rev. Lett. 96: 117401.
http://dx.doi.org/10.1103/PhysRevLett.96.117401

Cirac, J. I., Ritsch, H. & Zoller P. (1991).

Two-level system interacting with a finite-bandwidth thermal cavity mode, Phys. Rev. A 44: 4541.
http://dx.doi.org/10.1103/PhysRevA.44.4541

Ciuti, C. (2004).

Branch-entangled polariton pairs in planar microcavities and photonic wires, Phys. Rev. B 69: 245304.
http://dx.doi.org/10.1103/PhysRevB.69.245304

Ciuti, C., Schwendimann, P., Deveaud, B. & Quattropani A. (2000).

Theory of the angle-resonant polariton amplifier, Phys. Rev. B 62: R4825.
http://dx.doi.org/10.1103/PhysRevB.62.R4825

Clemens, J. P. & Rice P. R. (2000)

Nonclassical effects of a driven atoms-cavity system in the presence of an arbitrary driving field and dephasing, Phys. Rev. A 61: 063810.
http://dx.doi.org/ 10.1103/PhysRevA.61.063810

Clemens, J. P., Rice, P. R. & Pedrotti L. M. ( 2004).

Spectra of single-atom lasers, J. Opt. Soc. Am. B 21: 2025.
http://dx.doi.org/10.1364/JOSAB.21.002025

Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg G. (2001).

Photons et atomes, EDP Sciences.

Combescot, M. & Betbeder-Matibet, O. ( 2004).

Scattering rates and lifetime of exact and boson excitons, Phys. Rev. Lett. 93: 016403.
http://dx.doi.org/10.1103/PhysRevLett.93.016403

Cui, G. & Raymer M. G. (2006).

Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime, Phys. Rev. A 73: 053807.
http://dx.doi.org/10.1103/PhysRevA.73.053807

Davidovich, L., Raimond, J. M., Brune, M., & Haroche S. (1987).

Quantum theory of a two-photon micromaser, Phys. Rev. A 36: 3771.
http://dx.doi.org/10.1103/PhysRevA.36.3771

De Liberato, S., Ciuti, C. & Carusotto I. (2007).

Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency, Phys. Rev. Lett. 98: 103602.
http://dx.doi.org/10.1103/PhysRevLett.98.103602

del Valle, E., Laussy, F. P., Souza, F. M. & Shelykh I. A. (2008).

Optical spectra of a quantum dot in a microcavity in the nonlinear regime, Phys. Rev. B 78: 085304.
http://dx.doi.org/10.1103/PhysRevB.78.085304

del Valle, E., Laussy, F. P. & Tejedor C. (2007).

Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs, Europhys. Lett. 80: 57001.
http://dx.doi.org/10.1209/0295-5075/80/57001

del Valle, E., Laussy, F. P. & Tejedor C. ( 2009).

Luminescence spectra of quantum dots in microcavities. ii. fermions, Phys. Rev. B 79: 235326.
http://dx.doi.org/10.1103/PhysRevB.79.235326

del Valle, E., Laussy, F. P., Troiani, F. & Tejedor C. (2007a).

Entanglement and lasing with two quantum dots in a microcavity, Phys. Rev. B 76: 235317.
http://dx.doi.org/10.1103/PhysRevB.76.235317

del Valle, E., Laussy, F., Troiani, F. & Tejedor C. (2007b).

The steady state of two quantum dots in a cavity, Superlatt. Microstruct. 43: 465.
http://dx.doi.org/10.1016/j.spmi.2007.07.001

del Valle, E., Troiani, F. & Tejedor C. ( 2007).

Cavity quantum electrodynamics for two quantum dots, AIP Conference Proceedings 893: 1077.
http://dx.doi.org/10.1063/1.2730270

Deveaud, B. (ed.) (2007).

The Physics of Semiconductor Microcavities: From Fundamentals to Nanoscale Devices, Wiley-VCH.

Dias da Silva, L., Sandler, N., Ingersent, K. & Ulloa S. E. (2006).

Zero-field Kondo splitting and quantum-critical transition in double quantum dots, Phys. Rev. Lett. 97: 96603.
http://dx.doi.org/10.1103/PhysRevLett.97.096603

Dicke, R. H. (1954).

Coherence in spontaneous radiation processes, Phys. Rev. 93: 99.
http://dx.doi.org/10.1103/PhysRev.93.99

Diederichs, C. & Tignon J. (2005)

Design for a triply resonant vertical-emitting micro-optical parametric oscillator, Appl. Phys. Lett. 87: 251107.
http://dx.doi.org/10.1063/1.2150282

Diederichs, C., Tignon, J., Dasbach, G., Ciuti, C., Lemaître, A., Bloch, J., Roussignol, P. & Delalande C. (2006).

Parametric oscillation in vertical triple microcavities, Nature 440: 904.
http://dx.doi.org/10.1038/nature04602

Dirac, P. A. M. (1927).

The quantum theory of the emission and absorption of radiation, Proc. Roy. Soc. London A 114: 243.

Eberly, J. & Wodkiewicz, K. (1977).

The time-dependent physical spectrum of light, J. Opt. Soc. Am. 67: 1252.
http://dx.doi.org/10.1364/JOSA.67.001252

Feldtmann, T., Schneebeli, L., Kira, M. & Koch S. W. (2006).

Quantum theory of light emission from a semiconductor quantum dot, Phys. Rev. B 73: 155319.
http://dx.doi.org/10.1103/PhysRevB.73.155319

Fernandez-Vidal, S., Zippilli, S. & Morigi G. (2007).

Nonlinear optics with two trapped atoms, Phys. Rev. A 76: 253829.
http://dx.doi.org/10.1103/PhysRevA.76.053829

Ficek, Z. & Tanas R. (2002).

Entangled states and collective nonclassical effects in two-atom systems, Phys. Rep. 372: 369.
http://dx.doi.org/10.1016/S0370-1573(02)00368-Xdoi:10.1016/S0370-1573(02)00368-X

Fink, J. M., Göppl, M., Baur, M., Bianchetti, R., Leek, P. J., Blais, A. & Wallraff, A. (2008).

Climbing the jaynes-cummings ladder and observing its $ \sqrt{n}$ nonlinearity in a cavity QED system, Nature 454: 315.
http://dx.doi.org/10.1038/nature07112

Flissikowski, T., Betke, A., Akimov, I. A. & Henneberger, F. (2004).

Two-photon coherent control of a single quantum dot, Phys. Rev. Lett. 92: 227401.
http://dx.doi.org/10.1103/PhysRevLett.92.227401

Flissikowski, T., Betke, A., Akimov, I. A. & Henneberger, F. (2005).

Coherent control of the biexciton in a single quantum dot, Phys. Stat. Sol. A 202: 383.
http://dx.doi.org/10.1002/pssa.200460323

Florescu, L. (2006).

Spectrum of a one-atom laser in photonic crystals, Phys. Rev. A 74: 063828.
http://dx.doi.org/10.1103/PhysRevA.74.063828

Freedhoff, H. & Quang, T. (1994).

Ultrasharp lines in the absorption and fluorescence spectra of an atom in a cavity, Phys. Rev. Lett. 72: 474.
http://dx.doi.org/10.1103/PhysRevLett.72.474

Gardiner, G. W. (1991).

Quantum Noise, Springer-Verlag, Berlin.

Gauthier, D. J., Wu, Q., Morin, S. E. & Mossberg, T. W. (1992).

Realization of a continuous-wave, two-photon optical laser, Phys. Rev. Lett. 68: 464.
http://dx.doi.org/10.1103/PhysRevLett.68.464

Gérard, J.-M. & Gayral, G. (1999)

Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities, J. Light Wave Tech. 17: 2089.

Gerry, C. C. & Knight, P. L. (2005)

Introductory Quantum Optics, Cambridge University Press.

Gies, C., Wiersig, J., Lorke, M. & Jahnke, F. (2007).

Semiconductor model for quantum-dot-based microcavity lasers, Phys. Rev. A 75: 013803.
http://dx.doi.org/10.1103/PhysRevA.75.013803

Ginzel, C., Briegel, H.-J., Martini, U., Englert, B.-G. & Schenzle, A. (1993).

Quantum optical master equations: The one-atom laser, Phys. Rev. A 48: 732.
http://dx.doi.org/ 10.1103/PhysRevA.48.732doi: 10.1103/PhysRevA.48.732

Glauber, R. J. (1963a).

Coherent and incoherent states of the radiation field, Phys. Rev. 131: 2766.
http://dx.doi.org/10.1103/PhysRev.131.2766

Glauber, R. J. (1963b).

The quantum theory of optical coherence, Phys. Rev. 130: 2529.
http://dx.doi.org/10.1103/PhysRev.130.2529

Gotoh, H., Kamada, H., Saitoh, T., Ando, H. & Temmyo, J. (2005).

Exciton absorption properties of coherently coupled exciton-biexciton systems in quantum dots, Phys. Rev. B 71: 195334.
http://dx.doi.org/10.1103/PhysRevB.71.195334

Goy, P., Raimond, J. M., Gross, M. & Haroche, S. ( 1983).

Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. 50: 1903.
http://dx.doi.org/10.1103/PhysRevLett.50.1903

Gywat, O., Meier, F., Loss, D. & Awschalom, D. D. ( 2006).

Dynamics of coupled qubits interacting with an off-resonant cavity, Phys. Rev. B 73: 125336.
http://dx.doi.org/10.1103/PhysRevB.73.125336

Hanamura, E. (1970).

Theory of the high density exciton. I, J. Phys. Soc. Jpn. 29: 50.

Hanbury Brown, R. & Twiss, R. Q. ( 1956).

A test of a new type of stellar interferometer on Sirius, Nature 178: 1046.
http://dx.doi.org/10.1038/1781046a0

Haroche, S. & Kleppner, D. (1989).

Cavity quantum electrodynamics, Physics Today 42: 24.

Haroche, S. & Raimond, J.-M. (2006)

Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press.

Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. (2003).

Coherent manipulation of electronic states in a double quantum dot, Phys. Rev. Lett. 91: 226804.
http://dx.doi.org/10.1103/PhysRevLett.91.226804

Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atature, M., Gulde, S., Falt, S., Hu, E. L. & Imamoglu, A. ( 2007).

Quantum nature of a strongly coupled single quantum dot-cavity system, Nature 445: 896.
http://dx.doi.org/10.1038/nature05586

Holland, M., Burnett, K., Gardiner, C., Cirac, J. I. & Zoller, P. (1996).

Theory of an atom laser, Phys. Rev. A 54: R1757.
http://dx.doi.org/10.1103/PhysRevA.54.R1757

Holtz, P. O. (2007).

Communication at the PLMCN7 conference in Havana, Cuba.

Hopfield, J. J. (1958).

Theory of the contribution of excitons to the complex dielectric constant of crystals, Phys. Rev. 112: 1555.
http://dx.doi.org/10.1103/PhysRev.112.1555

Houdré, R., Weisbuch, C., Stanley, R. P., Oesterle, U., Pellandin, P. & Ilegems, M. (1994).

Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett. 73: 2043.
http://dx.doi.org/10.1103/PhysRevB.49.16761

Hughes, S. & Yao, P. (2009).

Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system, Opt. Express 17: 3322.
http://dx.doi.org/10.1364/OE.17.003322

Imamoglu, A. (1998).

Phase-space filling and stimulated scattering of composite bosons, Phys. Rev. B 57: 4195R.
http://dx.doi.org/10.1103/PhysRevB.57.R4195

Imamoglu, A., Awschalom, D. D., Burkard, G., DiVincenzo, D. P., Loss, D., Sherwin, M. & Small, A. (1999).

Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83: 4204.
http://dx.doi.org/10.1103/PhysRevLett.83.4204

Inoue, J. I., Ochiai, T. & Sakoda, K. ( 2008).

Spontaneous emission properties of a quantum dot in an ultrahigh-q cavity: Crossover from weak- to strong-coupling states and robust quantum interference, Phys. Rev. A 77: 015806.
http://dx.doi.org/10.1103/PhysRevA.77.015806

Ivanov, A. L., Borri, P., Langbein, W. & Woggon, U. (2004).

Radiative corrections to the excitonic molecule state in GaAs microcavities, Phys. Rev. B 69: 075312.
http://dx.doi.org/10.1103/PhysRevB.69.075312

Ivanov, A. L., Haug, H. & Keldysh, L. V. ( 1998).

Optics of excitonic molecules in semiconductors and semiconductor microstructures, Phys. Rep. 296: 237.
http://dx.doi.org/10.1016/S0370-1573(97)00074-4

Jaynes, E. & Cummings, F. (1963).

Comparison of quantum and semiclassical radiation theory with application to the beam maser, Proc. IEEE 51: 89.

John, S. (1987).

Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58: 2486.
http://dx.doi.org/10.1103/PhysRevLett.58.2486

Jones, B., Ghose, S., Clemens, J. P., Rice, P. R. & Pedrotti, L. M. (1999).

Photon statistics of a single atom laser, Phys. Rev. A 60: 3267.
http://dx.doi.org/ 10.1103/PhysRevA.60.3267doi: 10.1103/PhysRevA.60.3267

Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. (1983).

Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance, Phys. Rev. Lett. 51: 1175.
http://dx.doi.org/10.1103/PhysRevLett.51.1175

Karlovich, T. B. & Kilin, S. Y. ( 2001).

Quantum statistical properties of one-atom lasers, Opt. Spectrosc. 91: 343.
http://dx.doi.org/10.1134/1.1405210

Karlovich, T. B. & Kilin, S. Y. ( 2007).

Auto-and cross-correlation functions of a one-atom laser in a regime of strong coupling, Opt. Spectrosc. 103: 280.
http://dx.doi.org/10.1134/S0030400X07080188

Karlovich, T. B. & Kilin, S. Y. ( 2008).

Fluorescence spectrum of a one-atom laser in the strong-coupling regime, Laser Phys. 18: 783.
http://dx.doi.org/10.1134/S1054660X08060157

Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymanska, M. H., André, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B. & Le Si Dang (2006).

Bose-Einstein condensation of exciton polaritons, Nature 443: 409.
http://dx.doi.org/10.1038/nature05131

Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. (2007).

Microcavities, Oxford University Press.

Kavokin, A. & Malpuech, G. (2003).

Cavity polaritons, Vol. 32 of Thin films and nanostructures, Elsevier.

Kavokin, A. V. (2007).

Exciton-polaritons in microcavities: present and future, Appl. Phys. A 89: 241.
http://dx.doi.org/10.1007/s00339-007-4145-zdoi:10.1007/s00339-007-4145-z

Keldysh, L. V., Kulakovskii, V. D., Reitzenstein, S., Makhonin, M. N. & Forchel, A. (2006).

Interference effects in the emission spectra of QD's&isin#in;high quality cavities, Pis'ma ZhETF 84: 584.

Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. (1999).

Nonlinear optics of normal-mode-coupling semiconductor microcavities, Rev. Mod. Phys 71: 1591.
http://dx.doi.org/10.1103/RevModPhys.71.1591

Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. (2006).

Vacuum Rabi splitting in semiconductors, Nature Phys. 2: 81.
http://dx.doi.org/10.1038/nphys227

Kippenberg, T. J., Kalkman, J., Polman, A. & Vahala, K. J. (2006).

Demonstration of an erbium-doped microdisk laser on a silicon chip, Phys. Rev. A 74: 051802R.
http://dx.doi.org/10.1103/PhysRevA.74.051802

Kiraz, A., Michler, P., Becher, C., Gayral, B., Imamoglu, A., Zhang, L. & Hu, E. (2001).

Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure, Appl. Phys. Lett. 78: 3932.
http://dx.doi.org/10.1063/1.1379987

Kleppner, D. (1981).

Inhibited spontaneous emission, Phys. Rev. Lett. 47: 233.
http://dx.doi.org/10.1103/PhysRevLett.47.233

Koganov, G. A. & Shuker, R. (2000)

Photon statistics of a ground-state-pumped laser, Phys. Rev. A 63: 015802.
http://dx.doi.org/ 10.1103/PhysRevA.63.015802doi: 10.1103/PhysRevA.63.015802

Kozlovskii, A. & Oraevskii, A. ( 1999).

Sub-poissonian radiation of a one-atom two-level laser with incoherent pumping, Sov. Phys. JETP 88: 666.
http://dx.doi.org/ 10.1134/1.558842doi: 10.1134/1.558842

Krauss, T. F., Rue, R. M. D. L. & Brand, S. ( 1996).

Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature 383: 699.
http://dx.doi.org/10.1038/383699a0

Kroner, M., Govorov, A. O., Remi, S., Biedermann, B., Seidl, S., Badolato, A., Petroff, P. M., Zhang, W., Barbour, R., Gerardot, B. D., Warburton, R. J. & Karrai, K. (2008).

The nonlinear fano effect, Nature 451: 311.
http://dx.doi.org/10.1038/nature06506

Kubanek, A., Ourjoumtsev, A., Schuster, I., Koch, M., Pinkse, P. W. H., Murr, K. & Rempe, G. (2008).

Two-photon gateway in one-atom cavity quantum electrodynamics, Phys. Rev. Lett. 101: 203602.
http://dx.doi.org/10.1103/PhysRevLett.101.203602

Lachs, G. (1965).

Theoretical aspects of mixtures of thermal and coherent radiation, Phys. Rev. 138: B1012.
http://dx.doi.org/10.1103/PhysRev.138.B1012

Lamb Jr., W. E. (1995).

Anti-photon, Appl. Phys. B 60: 77.
http://dx.doi.org/10.1007/BF01135846

Lamb Jr., W. E. & Retherford, R. C. ( 1947).

Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72: 241.
http://dx.doi.org/10.1103/PhysRev.72.241

Lambert, N., Aguado, R. & Brandes, T. ( 2007).

Nonequilibrium entanglement and noise in coupled qubits, Phys. Rev. B 75: 45340.
http://dx.doi.org/10.1103/PhysRevB.75.045340

Lambropoulos, D. P. P. (1999).

Competition between one- and two-photon lasing in two cavity modes, Phys. Rev. A 60: 398.
http://dx.doi.org/10.1103/PhysRevA.60.398

Laucht, A., Hauke, N., Villas-Bôas, J. M., Hofbauer, F., Böhm, G., Kaniber, M. & Finley, J. J. (2009).

Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities, Phys. Rev. Lett. 103: 087405.
http://dx.doi.org/10.1103/PhysRevLett.103.087405

Laucht, A., Hofbauer, F., Hauke, N., Angele, J., Stobbe, S., Kaniber, M., Böhm, G., Lodahl, P., Amann, M.-C. & Finley, J. J. (2009).

Electrical control of spontaneous emission and strong coupling for a single quantum dot, New J. Phys. 11: 023034.
http://dx.doi.org/10.1088/1367-2630/11/2/023034

Laussy, F. P. & del Valle, E. ( 2009).

Optical spectra of the jaynes-cummings ladder, AIP Conference Proceedings 1147: 46.
http://dx.doi.org/10.1063/1.3183476

Laussy, F. P., del Valle, E. & Tejedor, C. ( 2008a).

Quantitative description of strong-coupling of quantum dots in microcavities.
http://arxiv.org/abs/0808.3215arXiv:0808.3215, To be published in AIP ICPS29 Conf. Proc.

Laussy, F. P., del Valle, E. & Tejedor, C. ( 2008b).

Strong coupling of quantum dots in microcavities, Phys. Rev. Lett. 101: 083601.
http://dx.doi.org/10.1103/PhysRevLett.101.083601

Laussy, F. P., del Valle, E. & Tejedor, C. ( 2009).

Luminescence spectra of quantum dots in microcavities. I. Bosons, Phys. Rev. B 79: 235325.
http://dx.doi.org/10.1103/PhysRevB.79.235325

Laussy, F. P., Glazov, M. M., Kavokin, A., Whittaker, D. M. & Malpuech, G. (2006).

Statistics of excitons in quantum dots and their effect on the optical emission spectra of microcavities, Phys. Rev. B 73: 115343.
http://dx.doi.org/10.1103/PhysRevB.73.115343

Laussy, F. P., Malpuech, G., Kavokin, A. & Bigenwald, P. (2004).

Spontaneous coherence buildup in a polariton laser, Phys. Rev. Lett. 93: 016402.
http://dx.doi.org/10.1103/PhysRevLett.93.016402

Lax, M. (1963).

Formal theory of quantum fluctuations from a driven state, Phys. Rev. 129: 2342.
http://dx.doi.org/10.1103/PhysRev.129.2342

Lax, M. (1967).

Quantum noise. X. Density-matrix treatment of field and population-difference fluctuations, Phys. Rev. 157: 213.
http://dx.doi.org/10.1103/PhysRev.157.213

Lewenstein, M., Zhu, Y. & Mossberg, T. W. ( 1990).

Two-photon gain and lasing in strongly driven two-level atoms, Phys. Rev. Lett. 64: 3131.
http://dx.doi.org/10.1103/PhysRevLett.64.3131

Lidar, D. A., Chuang, I. L. & Whaley, K. B. ( 1998).

Decoherence-free subspaces for quantum computation, Phys. Rev. Lett. 81: 2594.
http://dx.doi.org/ 10.1103/PhysRevLett.81.2594doi: 10.1103/PhysRevLett.81.2594

Lindblad, G. (1976).

On the generators of quantum dynamical semigroups, Commun. Math. Phys 48: 119.

Löffler, A., Reithmaier, J. P., Sek, G., Hofmann, C., Reitzenstein, S., Kamp, M. & Forchel, A. (2005).

Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions, Appl. Phys. Lett. 86: 111105.
http://dx.doi.org/10.1063/1.1880446

Löffler, M., Meyer, G. M. & Walther, H. ( 1997).

Spectral properties of the one-atom laser, Phys. Rev. A 55: 3923.
http://dx.doi.org/10.1103/PhysRevA.55.3923

Louisell, W. H. (1973).

Quantum Statistical Properties of Radiation, New York: Wiley.

Low, F. (1952).

Natural line shape, Phys. Rev. 88: 53.
http://dx.doi.org/10.1103/PhysRev.88.53

Mabuchi, H. & Doherty, A. C. (2002)

Cavity quantum electrodynamics: Coherence in context, Science 298: 1372.
http://dx.doi.org/10.1126/science.1078446

Machnikowski, P. (2008).

Theory of two-photon processes in quantum dots: Coherent evolution and phonon-induced dephasing, Phys. Rev. B 78: 195320.
http://dx.doi.org/10.1103/PhysRevB.78.195320

Mandel, L. & Wolf, E. (1995).

Optical coherence and quantum optics, Cambridge University Press.

Marquardt, F. & Bruder, C. (2003).

Dephasing in sequential tunneling through a double-dot interferometer, Phys. Rev. B 68: 195305.
http://dx.doi.org/10.1103/PhysRevB.68.195305

Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D. & Bastard, G. (1994).

Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs, Phys. Rev. Lett. 73: 716.
http://dx.doi.org/10.1103/PhysRevLett.73.716

Meekhof, D. M., Monroe, C., King, B. E., Itano, W. M. & Wineland, D. J. (1996).

Generation of nonclassical motional states of a trapped atom, Phys. Rev. Lett. 76: 1796.
http://dx.doi.org/10.1103/PhysRevLett.76.1796

Michaelis, B., C., C. E. & Beenakker, C. W. ( 2006).

All-electronic coherent population trapping in quantum dots, Europhys. Lett. 73: 677.
http://dx.doi.org/10.1209/epl/i2005-10458-6

Milburn, G. J. & Holmes, C. A. ( 1986).

Dissipative quantum and classical liouville mechanics of the anharmonic oscillator, Phys. Rev. Lett. 56: 2237.
http://dx.doi.org/10.1103/PhysRevLett.56.2237

Milonni, P. W., Ackerhalt, J. R. & Smith, W. A. ( 1973).

Interpretation of radiative corrections in spontaneous emission, Phys. Rev. Lett. 31: 958.
http://dx.doi.org/10.1103/PhysRevLett.31.958

Mollow, B. R. (1969).

Power spectrum of light scattered by two-level systems, Phys. Rev. 188: 1969.
http://dx.doi.org/10.1103/PhysRev.188.1969

Mølmer, K. (1996).

Notes: Correlations functions and the quantum regression theorem.
URL:">http://www.phys.au.dk/quantop/kvanteoptik/qrtnote.pdf">URL: http://www.phys.au.dk/quantop/kvanteoptik/qrtnote.pdf

Mu, Y. & Savage, C. M. (1992).

One-atom lasers, Phys. Rev. A 46: 5944.
http://dx.doi.org/10.1103/PhysRevA.46.5944

Muller, A., Flagg, E. B., Bianucci, P., Wang, X. Y., Deppe, D. G., Ma, W., Zhang, J., Salamo, G. J., Xiao, M. & Shih, C. K. ( 2007).

Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity, Phys. Rev. Lett. 99: 187402.
http://dx.doi.org/10.1103/PhysRevLett.99.187402

Muller, A., Shih, C.-K., Ahn, J., Lu, D., Gazula, D. & Deppe, D. G. (2006).

High $ Q$ (33 000) all-epitaxial microcavity for quantum dot vertical-cavity surface-emitting lasers and quantum light sources, Appl. Phys. Lett. 88: 031107.
http://dx.doi.org/10.1063/1.2158519

Münch, S., Reitzenstein, S., Franeck, P., Löffler, A., Heindel, T., Höfling, S., Worschech, L. & Forchel, A. ( 2009).

The role of optical excitation power on the emission spectra of a strongly coupled quantum dot-micropillar system, Opt. Express 17: 12821.
http://dx.doi.org/10.1364/OE.17.012821

Munro, W. J., James, D. F. V., White, A. G. & Kwiat, P. G. (2001).

Maximizing the entanglement of two mixed qubits, Phys. Rev. A 64: 030302.
http://dx.doi.org/10.1103/PhysRevA.64.030302

Naesby, A., Suhr, T., Kristensen, P. T. & Mork, J. ( 2008).

Influence of pure dephasing on emission spectra from single photon sources, Phys. Rev. A 78: 045802.
http://dx.doi.org/10.1103/PhysRevA.78.045802

Nielsen, T. R., Gartner, P. & Jahnke, F. ( 2004).

Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers, Phys. Rev. B 69: 235314.
http://dx.doi.org/10.1103/PhysRevB.69.235314

Ning, C. Z. (2004).

Two-photon lasers based on intersubband transitions in semiconductor, Phys. Rev. Lett. 93: 187403.
http://dx.doi.org/10.1103/PhysRevLett.93.187403

Noda, S., Chutinan, A. & Imada, M. ( 2000).

Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature 407: 608.
http://dx.doi.org/10.1038/35036532

Noda, S., Fujita, M. & Asano, T. ( 2007).

Spontaneous-emission control by photonic crystals and nanocavities, Nature Photon. 1: 449.
http://dx.doi.org/10.1038/nphoton.2007.141

Nomura, M., Ota, Y., Kumagai, N., Iwamoto, S. & Arakawa, Y. (2008).

Large vacuum Rabi splitting in single self-assembled quantum dot-nanocavity system, Appl. Phys. Express 1: 072102.
http://dx.doi.org/10.1143/APEX.1.072102

Nosich, A. I., Smotrova, E. I., Boriskina, S. V., Benson, T. M. & Sewell, P. (2007).

Trends in microdisk laser research and linear optical modelling, Opt. Quant. Electron. 39: 1253.
http://dx.doi.org/10.1007/s11082-008-9203-zdoi:10.1007/s11082-008-9203-z

Painter, O., Lee, R. K., Scherer, A., Yariv, A., O'Brien, J. D., Dapkus, P. D. & Kim, I. (1999).

Two-dimensional photonic band-gap defect mode laser, Science 284: 1819.
http://dx.doi.org/ 10.1126/science.284.5421.1819doi: 10.1126/science.284.5421.1819

Park, H.-G., Kim, S.-H., Kwon, S.-H., Ju, Y.-G., Yang, J.-K., Baek, J.-H., Kim, S.-B. & Lee, Y.-H. (2004).

Electrically driven single-cell photonic crystal laser, Science 305: 1444.
http://dx.doi.org/ 10.1126/science.1100968doi: 10.1126/science.1100968

Pathak, P. K. & Agarwal, G. S. ( 2004).

Large two-atom two-photon vacuum Rabi oscillations in a high-quality cavity, Phys. Rev. A 70: 043807.
http://dx.doi.org/10.1103/PhysRevA.70.043807

Pau, S., Björk, G., Jacobson, J., Cao, H. & Yamamoto, Y. (1995).

Microcavity exciton-polariton splitting in the linear regime, Phys. Rev. B 51: 14437.
http://dx.doi.org/10.1103/PhysRevB.51.14437

Perea, J. I., Porras, D. & Tejedor, C. ( 2004).

Dynamics of the excitations of a quantum dot in a microcavity, Phys. Rev. B 70: 115304.
http://dx.doi.org/10.1103/PhysRevB.70.115304

Perea, J. I. & Tejedor, C. (2005).

Polarization entanglement visibility of photon pairs emitted by a quantum dot embedded in a microcavity, Phys. Rev. B 72: 035303.
http://dx.doi.org/10.1103/PhysRevB.72.035303

Peter, E., Senellart, P., Martrou, D., Lemaître, A., Hours, J., Gérard, J. M. & Bloch, J. (2005).

Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett. 95: 067401.
http://dx.doi.org/10.1103/PhysRevLett.95.067401

Porras, D. & Tejedor, C. (2003).

Linewidth of a polariton laser: Theoretical analysis of self-interaction effects, Phys. Rev. B 67: 161310(R).
http://dx.doi.org/10.1103/PhysRevB.67.161310

Press, D., Götzinger, S., Reitzenstein, S., Hofmann, C., Löffler, A., Kamp, M., Forchel, A. & Yamamoto, Y. ( 2007).

Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime, Phys. Rev. Lett. 98: 117402.
http://dx.doi.org/10.1103/PhysRevLett.98.117402

Purcell, E. M. (1946).

Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69: 681.

Raimond, J. M., Brune, M. & Haroche, S. ( 2001).

Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73: 565.
http://dx.doi.org/10.1103/RevModPhys.73.565

Reithmaier, J. P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L. V., Kulakovskii, V. D., Reinecker, T. L. & Forchel, A. (2004).

Strong coupling in a single quantum dot-semiconductor microcavity system, Nature 432: 197.
http://dx.doi.org/10.1038/nature02969

Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S. H., Schneider, C., Löffler, A., Höfling, S., Kamp, M. & Forchel, A. (2007).

AlAs/GaAs micropillar cavities with quality factors exceeding 150.000, Appl. Phys. Lett. 90: 251109.
http://dx.doi.org/10.1063/1.2749862

Rohener, M., Reitmaier, J. P., Forchel, A., Schaefer, F. & Zull, H. (1997).

Laser emission from photonic dots, Appl. Phys. Lett. 71: 488.
http://dx.doi.org/10.1063/1.119587

Rudin, S. & Reinecke, T. L. (1999)

Oscillator model for vacuum Rabi splitting in microcavities, Phys. Rev. B 59: 10227.
http://dx.doi.org/10.1103/PhysRevB.59.10227

Ryu, H. Y., Notomi, M., Kuramoti, E. & Segawa, T. ( 2000).

Laser emission from quantum dots in microdisk structures, Appl. Phys. Lett. 77: 184.
http://dx.doi.org/10.1063/1.126918

Sanchez-Mondragon, J. J., Narozhny, N. B. & Eberly, J. H. (1983).

Theory of spontaneous-emission line shape in an ideal cavity, Phys. Rev. Lett. 51: 550.
http://dx.doi.org/10.1103/PhysRevLett.51.550

Sanvitto, D., Daraei, A., Tahraoui, A., Hopkinson, M., Fry, P. W., Whittaker, D. M. & Skolnick, M. S. (2005).

Observation of ultrahigh quality factor in a semiconductor microcavity, Appl. Phys. Lett. 86: 191109.
http://dx.doi.org/10.1063/1.1925774

Savage, C. M. (1989).

Resonance fluorescence spectrum of an atom strongly coupled to a cavity, Phys. Rev. Lett. 63: 1376.
http://dx.doi.org/10.1103/PhysRevLett.63.1376

Savasta, S., Stefano, O. D., Savona, V. & Langbein, W. (2005).

Quantum complementarity of microcavity polaritons, Phys. Rev. Lett. 94: 246401.
http://dx.doi.org/10.1103/PhysRevLett.94.246401

Savona, V., Andreani, L. C., Schwendimann, P. & Quattropani, A. (1995).

Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes, Solid State Commun. 93: 733.
http://dx.doi.org/10.1016/0038-1098(94)00865-5

Savona, V. & Tassone, F. (1995).

Exact quantum calculation of polariton dispersion in semiconductor microcavities, Solid State Commun. 95: 673.

Savvidis, P. G., Baumberg, J. J., Stevenson, R. M., Skolnick, M. S., Whittaker, D. M. & Roberts, J. S. (2000).

Angle-resonant stimulated polariton amplifier, Phys. Rev. Lett. 84: 1547.
http://dx.doi.org/10.1103/PhysRevLett.84.1547

Schlosshauer, M. A. & Schlosshauer-Selbach, M. (eds) (2007).

Decoherence and the Quantum-to-classical Transition, Springer.

Schmitt-Rink, S., Chemla, D. S. & Miller, D. A. B. ( 1985).

Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures, Phys. Rev. B 32: 6601.
http://dx.doi.org/10.1103/PhysRevB.32.6601

Schneebeli, L., Kira, M. & Koch, S. W. ( 2008).

Characterization of strong light-matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy, Phys. Rev. Lett. 101: 097401.
http://dx.doi.org/10.1103/PhysRevLett.101.097401

Schuster, I., Kubanek, A., Fuhrmanek, A., Puppe, T., Pinkse, P. W. H., Murr, K. & Rempe, G. (2008).

Nonlinear spectroscopy of photons bound to one atom, Nature Phys. 4: 382.
http://dx.doi.org/10.1038/nphys940

Scully, M. O. & Zubairy, M. S. ( 2002).

Quantum optics, Cambridge University Press.

Shore, B. W. & Knight, P. L. (1993)

The Jaynes-Cummings model, J. Mod. Opt. 40: 1195.
http://dx.doi.org/10.1080/09500349314551321

Skolnick, M. S., Fisher, T. A. & Whittaker, D. M. ( 1998).

Strong coupling phenomena in quantum microcavity structures, Semicond. Sci. Technol. 13: 645.
http://dx.doi.org/10.1088/0268-1242/13/7/003

Slusher, R. E., Levi, A. F. J., Mohideen, U., McCall, S. L., Pearton, S. J. & Logan, R. A. (1993).

Threshold characteristics of semiconductor microdisk lasers, Appl. Phys. Lett. 63: 1310.
http://dx.doi.org/10.1063/1.109714

Solomon, G. S., Pelton, M. & Yamamoto, Y. ( 2001).

Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity, Phys. Rev. Lett. 86: 3903.
http://dx.doi.org/10.1103/PhysRevLett.86.3903

Srinivasan, K. & Painter, O. (2007)

Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system, Nature 450: 862.
http://dx.doi.org/10.1038/nature06274

Steiner, J. T., Kira, M. & Koch, S. W. ( 2008).

Optical nonlinearities and Rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields, Phys. Rev. B 77: 165308.
http://dx.doi.org/10.1103/PhysRevB.77.165308

Strauf, S., Hennessy, K., Rakher, M. T., Choi, Y. S., Badolato, A., Andreani, L. C., Hu, E. L., Petroff, P. M. & Bouwmeester, D. (2006).

Self-tuned quantum dot gain in photonic crystal lasers, Phys. Rev. Lett. 96: 127404.
http://dx.doi.org/10.1103/PhysRevLett.96.127404

Stufler, S., Machnikowski, P., Ester, P., Bichler, M., Axt, V. M., Kuhn, T. & Zrenner, A. (2004).

Two-photon Rabi oscillations in a single In$ _x$Ga$ _{1–x}$As/GaAs quantum dot, Phys. Rev. B 73: 125304.
http://dx.doi.org/10.1103/PhysRevB.73.125304

Sudarshan, E. C. G. (1963).

Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett. 10: 277.
http://dx.doi.org/10.1103/PhysRevLett.10.277

Takahashi, Y., Hagino, H., Tanaka, Y., Song, B.-S., Asano, T. & Noda, S. (2007).

High-$ Q$ nanocavity with a 2ns photon lifetime, Opt. Express 15: 17206.
http://dx.doi.org/10.1364/OE.15.017206

Tanaka, Y., Asano, T. & Noda, S. ( 2008).

Design of photonic crystal nanocavity with $ Q$-factor of $ \sim
10^9$, J. Light Wave Tech. 26: 1532.

Tian, L. & Carmichael, H. J. (1992)

Incoherent excitation of the jaynes-cummings system, Quantum Opt. 4: 131.
http://dx.doi.org/10.1088/0954-8998/4/2/007

Vahala, K. J. (2003).

Optical microcavities, Nature 424: 839.
http://dx.doi.org/10.1038/nature01939

Varada, G. V. & Agarwal, G. S. ( 1992).

Two-photon resonance induced by the dipole-dipole interaction, Phys. Rev. A 45: 6721.
http://dx.doi.org/10.1103/PhysRevA.45.6721

Vera, C. A., Vinck-Posada, H. & Gonzalez, A. ( 2008).

Theory of the polariton laser, http://arxiv.org/abs/0807.1137arXiv:0807.1137 .

Vorrath, T. & Brandes, T. (2003).

Dicke effect in the tunnel current through two double quantum dots, Phys. Rev. B 68: 35309.
http://dx.doi.org/10.1103/PhysRevB.68.035309

Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. (1992).

Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69: 3314.
http://dx.doi.org/10.1103/PhysRevLett.69.3314

Weisskopf, W. & Wigner, E. (1930).

Calculation of the natural line width on the basis of Dirac's theory of light (as translated by J. B. Sykes), Zeitschrift für Physik 63: 54.

Welton, T. A. (1948).

Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field, Phys. Rev. 74: 1157.
http://dx.doi.org/10.1103/PhysRev.74.1157

Whittaker, D. M., Guimaraes, P. S. S., Sanvitto, D., Vinck, H., Lam, S., Daraei, A., Timpson, J. A., Fox, A. M., Skolnick, M. S., Ho, Y.-L. D., Rarity, J. G., Hopkinson, M. & Tahraoui, A. ( 2007).

High $ Q$ modes in elliptical microcavity pillars, Appl. Phys. Lett. 90: 161105.
http://dx.doi.org/10.1063/1.2722683

Wiener, N. (1930).

Generalized harmonic analysis, Acta Mathematica 55: 117.

Wootters, W. K. (1998).

Entanglement of formation of an arbitrary state of two qubits,, Phys. Rev. Lett. 80: 2245.
http://dx.doi.org/10.1103/PhysRevLett.80.2245

Yablonovitch, E. (1987).

Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58: 2059.
http://dx.doi.org/10.1103/PhysRevLett.58.2059

Yablonovitch, E. (2001).

Photonic crystals: Semiconductors of light, Sci. Am. 285.

Yablonovitch, E., Gmitter, T. J. & Leung, K. M. ( 1991).

Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 67: 2295.
http://dx.doi.org/10.1103/PhysRevLett.67.2295

Yamaguchi, M., Asano, T. & Noda, S. ( 2008).

Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics, Opt. Express 16: 118067.
http://dx.doi.org/10.1364/OE.16.018067

Yamamoto, Y. & Imamoglu, A. ( 1999).

Mesoscopic Quantum Optics, John Wiley & Sons, inc.

Yokoyama, H., Nishi, K., Anan, T., Yamada, H., Brorson, S. D. & Ippen, E. P. (1990).

Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities, Appl. Phys. Lett. 57: 2814.
http://dx.doi.org/10.1063/1.103771

Yoshie, T., Scherer, A., Heindrickson, J., Khitrova, G., Gibbs, H. M., Rupper, G., Ell, C., Shchekin, O. B. & Deppe, D. G. ( 2004).

Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432: 200.
http://dx.doi.org/10.1038/nature03119

Zhang, L. H. & Hu, E. (2003).

Lasing from InGaAs quantum dots in an injection microdisk, Appl. Phys. Lett. 82: 319.
http://dx.doi.org/10.1063/1.1538312

Zhu, Y., Gauthier, D. J., Morin, S. E., Wu, Q., Carmichael, H. J. & Mossberg, T. W. (1990).

Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations, Phys. Rev. Lett. 64: 2499.
http://dx.doi.org/10.1103/PhysRevLett.64.2499



Elena del Valle ©2009-2010-2011-2012.